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The symplectic integration method is popular in high-accuracy numerical simulations when 
discretizing temporal derivatives; however, it still suffers from time-dispersion error when 
the temporal interval is coarse, especially for long-term simulations and large-scale models. 
We employ the inverse time dispersion transform (ITDT) to the third-order symplectic 
integration method to reduce the time-dispersion error. First, we adopt the pseudospectral 
algorithm for the spatial discretization and the third-order symplectic integration method 
for the temporal discretization. Then, we apply the ITDT to eliminate time-dispersion error 
from the synthetic data. As a post-processing method, the ITDT can be easily cascaded in 
traditional numerical simulations. We implement the ITDT in one typical exiting third-
order symplectic scheme and compare its performances with the performances of the 
conventional second-order scheme and the rapid expansion method. Theoretical analyses 
and numerical experiments show that the ITDT can significantly reduce the time-dispersion 
error, especially for long travel times. The implementation of the ITDT requires some 
additional computations on correcting the time-dispersion error, but it allows us to use 
the maximum temporal interval under stability conditions; thus, its final computational 
efficiency would be higher than that of the traditional symplectic integration method 
for long-term simulations. With the aid of the ITDT, we can obtain much more accurate 
simulation results but with a lower computational cost.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Seismic modeling is an important foundation for exploration seismology, and synthetic seismograms are helpful for un-
derstanding wave phenomena in complex media. High-accuracy seismic modeling schemes are essential for high-resolution 
seismic interpretations. Seismic modeling methods can be classified into three main categories: direct methods, integral-
equation methods, and ray-tracing methods [1]. The direct methods are the most popular since they can handle complicated 
wave phenomena associated with various structures well. The direct methods include three main kinds: finite-difference 
(FD) methods [2–4], pseudospectral methods [5–8], and finite-element methods [9]. Some hybrid methods, such as spectral-
element methods [10] and finite-volume methods [11] have also been developed to achieve a much higher accuracy in 
numerical simulations.
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For direct seismic modeling methods, both space and time variables need to be discretized. A large sampling interval 
of discretization would bring severe numerical dispersion error; in contrast, a small sampling interval could reduce the 
numerical dispersion error but would greatly increase the computational cost. Therefore, it is necessary to develop high 
accuracy methods that can employ course grids in both temporal and spatial discretizations. Conventional FD schemes for 
spatial discretization lead to space dispersion error when computing the space derivatives of the wave equations. A typical 
exhibition of the space dispersion error is that the high frequency components of the wavefields do not propagate exactly 
with the expected velocity [12]. Numerous methods have been developed to eliminate space dispersion: the high-order 
FD schemes [12–16], optimized FD operators [17–26], the flux-corrected transport technique [27–29], the nearly analytical 
discrete methods [30,31], the stereo-modeling methods [32], and the pseudospectral methods [5–8].

Numerical discretization of temporal derivatives also introduces numerical artifacts, which are called time-dispersion 
error. The time-dispersion error is not as serious as the space dispersion error since it can be greatly reduced using a fairly 
small temporal interval. However, in the presence of long-term problems and large-scale models, a small temporal interval 
would tremendously increase the computational cost; for such cases, we have to use a large temporal interval to avoid 
overburdened computational cost. Unfortunately, a large temporal interval would introduce strong time-dispersion error as 
expected. For example, the second-order FD discretization have been widely used [33] due to its simplicity, but an extremely 
fine temporal interval is needed to minimize the time-dispersion error since its time-dispersion error is the most serious 
among all known methods.

To cope with the time-dispersion error, various methods have been developed, such as high-order time FD schemes [12,
34–37], the rapid expansion method [38–41], low rank methods [42,43], Fourier finite-difference methods [44–46], correc-
tion methods based on filter and interpolation [47–50], and time dispersion transforms [51,52] as reviewed below.

Chen [34] presented three modeling schemes using high-order temporal discretization: the Lax–Wendroff method [1,12,
53], the Nyström method [54–56], and the splitting method [57–59]. The splitting method is the same as the third-order 
symplectic integration method developed by Ruth [57]. Zhang et al. [35] and Zhang and Zhang [37] proposed a one-step 
extrapolation algorithm. This algorithm formulates the two-way wave equation as a first-order partial differential equation in 
time without suffering from numerical instability or time dispersion problems, which allows for a large temporal interval. 
However, their decomposition algorithm, optimized separable approximation [60], is expensive due to too many Fourier 
transforms [61].

Fomel et al. [42] approximated the wave extrapolation operators using the low rank approximation of a matrix operator 
in the mixed space-wavenumber domain. This method reduces computational cost by optimally selecting reference velocities 
and weights [61]. Song and Fomel [44] developed a related method, the Fourier finite-difference method, by cascading a 
Fourier transform operator and an FD operator to form a chain operator. The Fourier finite-difference method may have an 
advantage in efficiency because it uses only one pair of multidimensional forward and inverse fast Fourier transforms per 
temporal interval. However, it does not offer flexible controls on the approximation accuracy [43].

The rapid expansion method [39–41] incorporates Chebyshev polynomials during the approximation. This method em-
ploys many high orders for the temporal discretization (e.g., 8-order [40]) thus is suitable for large temporal intervals using 
concepts similar to the work presented by Tal-Ezer et al. [38]. Instead of using more terms in the expansion, Etgen and 
Brandsberg-Dahl [62] generalize the pseudospectral method to obtain pseudo-analytical solutions. They modify the Fourier 
transform of the Laplacian operator for the constant velocity model in an arbitrary number of space dimensions.

The time dispersion has proven to be independent of both the velocity model and the space dispersion model; further-
more, it is predictable since it only depends on the frequency, temporal interval, and propagation time [50]. Therefore, the 
time dispersion could be handled separately from space dispersion, without considering velocity variations. Liu et al. [49]
formulated an explicit time evolution scheme in the time–space domain by introducing a cosine function approximation, in 
which optimum stencils and least-squares coefficients are introduced. Stork [48] proposed that the time-dispersion error is 
fully predictable and can be removed with careful filtering after FD modeling. Time dispersion is fixed by applying a time 
variable filter and interpolation. Dai et al. [50] showed more details and extended the mathematical analyses on Stork’s 
work. Li et al. [47] showed two post-propagation filtering schemes based on the method proposed by Stork [48], and this 
type of correction method does not affect the computational efficiency much.

Wang and Xu [51,52] studied the time dispersion of pseudospectral methods and predicted it in theory. To remove 
the time-dispersion error, they proposed a time dispersion prediction algorithm (i.e. forward time dispersion transform) 
and correction algorithm (i.e. inverse time dispersion transform), which works for any order conventional time FD scheme. 
A relatively large temporal interval is allowed for wave propagation, which can greatly retain the computational efficiency 
while improving the accuracy [51].

For long-term simulations in large-scale seismic exploration and seismology [34,63–65], the conventional FD schemes on 
discretizing the temporal derivatives are not structure-preserving thus are extremely difficult to avoid error accumulations 
caused by the time dispersion. We can solve wave equations using symplectic integration methods (or the Hamiltonian dy-
namical systems) to reduce error accumulations [57,66,67]. On the other hand, a large temporal interval that is approaching 
the stability upper limit would greatly improve the computational efficiency. However, symplectic integration methods still 
suffer from error accumulations at fairly long travel times when using large temporal interval.

In this paper, we incorporate the inverse time dispersion transform (ITDT) [51,52] into the third-order symplectic in-
tegration method to reduce error accumulations when using a large temporal interval. We verify the superiority of our 
scheme by comparing it with the conventional second-order scheme and the rapid expansion method (8-order [40]). The 
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