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ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) 
schemes are widely used high-order schemes for solving partial differential equations 
(PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For 
structured meshes, these techniques can achieve high order accuracy for smooth functions 
while being non-oscillatory near discontinuities. For unstructured meshes, which are 
needed for complex geometries, similar schemes are required but they are much more 
challenging. We propose a new family of non-oscillatory schemes, called WLS-ENO, in 
the context of solving hyperbolic conservation laws using finite-volume methods over 
unstructured meshes. WLS-ENO is derived based on Taylor series expansion and solved 
using a weighted least squares formulation. Unlike other non-oscillatory schemes, the 
WLS-ENO does not require constructing sub-stencils, and hence it provides a more flexible 
framework and is less sensitive to mesh quality. We present rigorous analysis of the 
accuracy and stability of WLS-ENO, and present numerical results in 1-D, 2-D, and 3-D 
for a number of benchmark problems, and also report some comparisons against WENO.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many physical phenomena, such as waves, heat conduction, electrodynamics, elasticity, etc., can be modeled by partial 
differential equations. With the development of computer technology, many numerical methods have been designed to solve 
these kinds of problems over the past decades. Among these there are finite difference methods and their generalizations, 
finite volume methods, and finite element methods.

In this paper, we consider the problem of reconstructing a piecewise smooth function, in the context of finite volume 
methods for hyperbolic conservation laws. Given a geometric domain � ⊆ R

d , suppose u is a time-dependent piecewise 
smooth function over �, such as a density function. For any connected region τ , the d-dimensional conservation law can be 
written in the formˆ

τ

∂u(x, t)

∂t
dx = −

ˆ

∂τ

F (u) · da, (1)

where ∂τ is the boundary of τ , and F is a function of u, corresponding to the flux.
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A finite volume method solves the problem by decomposing the domain � into cells {τi | i = 1, . . . , N}. Let |τi| denote 
the volume of τi and ui(t) = 1

|τi |
´
τi

u(x, t) dx, the average of u over τi . We obtain an equation

dui(t)

∂t
= −|τi|

ˆ

∂τi

F (u) · da, (2)

for each τi . The boundary integral requires using numerical quadrature for the flux. The integration of the flux requires 
reconstructing u from the cell averages u(t) in an accurate and stable fashion, and then evaluating the reconstruction at 
the quadrature points along the cell boundaries. For stability, F · n is typically replaced by a numerical flux, such as the 
Lax–Friedrichs flux,

F · n = 1

2

[(
F
(
u−)+ F

(
u+)) · n − α

(
u+ − u−)] , (3)

where u− and u+ are the values of u inside and outside the cell τi . The parameter α is a constant, and it should be an 
upper bound of the eigenvalues of the Jacobian of u in the normal direction.

In this context, we formulate the mathematical problem addressed in this paper as follows: Given the cell averages ui
of a piecewise smooth function u(x) for cell τ1, τ2, . . . , τN , let hi be some length measure of cell τi . Find a polynomial 
approximation ̃ui(x) of degree at most p − 1 over τi , such that

‖̃ui(x) − ui(x)‖ = O(hp
i ), x ∈ τi . (4)

In other words, ̃ui(x) is a pth order accurate approximation to u(x) inside τi . In the context of hyperbolic conservation laws, 
u(x) in (4) is equal to u(x, t) in (1) at a given t . For the facet between two cells, these reconstructions give us two values 
u− and u+ , which can then be substituted into (3) to calculate the numerical flux. These reconstructions must be accurate, 
and also must lead to stable discretizations of the hyperbolic conservation laws when coupled with some appropriate time 
integration schemes, such as TVD Runge–Kutta schemes [1].

This reconstruction problem is decidedly challenging, because hyperbolic conservation laws can produce non-smooth so-
lutions. An approximation scheme for smooth functions may lead to oscillations that do not diminish as the mesh is refined, 
analogous to the Gibbs phenomena. Such oscillations would undermine the convergence of the solutions. The ENO (Essen-
tially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes [2–4] have been successful in solving this 
problem. In a nutshell, the WENO schemes use a convex combination of polynomials constructed over some neighboring 
cells, with higher weights for cells with smoother solutions and lower weights for cells near discontinuities. As a result, 
these methods can achieve high-order accuracy at smooth regions while being non-oscillatory near discontinuities. These 
reconstructions can be integrated into both finite volume and finite difference methods. With years of development, finite 
volume WENO schemes have been applied to both structured and unstructured meshes and higher dimensions [5–10]. Var-
ious attempts have been applied to improve the weights for WENO reconstruction [11–14]. Also, they have used WENO 
schemes in many applications, such as shock vortex interaction [15], incompressible flow problems [16], Hamilton–Jacobi 
equations [17], shallow water equations [18], etc.

Along the path of applying WENO schemes on unstructured meshes, tremendous effort has been made to improve the 
robustness of the schemes. Early attempts [5] work well for most unstructured meshes, but some point distributions may 
lead to negative weights and in turn make the schemes unstable. An extension was proposed in [7] to mitigate the issue, 
but it still had limited success over complicated geometries due to inevitably large condition numbers of their local linear 
systems. More recently, several different partition techniques were proposed to improve stability, such as [19], which uses a 
hybrid of two different reconstruction strategies to achieve better results. The technique was adopted in [20–22] for further 
development.

In this paper, we propose a new family of reconstruction methods over unstructured meshes. We refer to the schemes 
as WLS-ENO, or Weighted-Least-Squares based Essentially Non-Oscillatory schemes. Unlike the WENO scheme, our approach 
uses a generalized finite difference (GFD) formulation based on weighted least squares, rather than a weighted averaging 
of traditional finite differences. The GFD method is derived rigorously from Taylor series, and hence can deliver the same 
order of accuracy as traditional finite differences. In WLS-ENO, the convexity requirement is satisfied automatically, since 
the weights are specified a priori. These properties enable a more systematic way to construct non-oscillatory schemes. We 
will present the detailed derivation of the schemes and their robust numerical solution techniques. We also show that the 
schemes are often more accurate than WENO schemes near discontinuities and enable more stable PDE solvers when used 
in conjunction with total variation-diminishing time-integration schemes such as TVD Runge–Kutta. We report theoretical 
analysis in 1-D as well as experimental results in 1-D, 2-D, and 3-D.

The remainder of this paper is organized as follows. Section 2 reviews the ENO and WENO schemes, as well as some re-
lated background knowledge. Section 3 presents the derivation and numerical methods of the WLS-ENO schemes. Section 4
analyzes the accuracy and stability of the WLS-ENO schemes, and compares them against WENO and its previous general-
ization to unstructured meshes. Section 5 presents some numerical results and comparisons against some other methods. 
Finally, Section 6 concludes the paper with some discussions on future research directions.
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