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We develop a complete convergence theory for the Maximum Entropy method based on 
moment matching for a sequence of approximate statistical moments estimated by the 
Multilevel Monte Carlo method. Under appropriate regularity assumptions on the target 
probability density function, the proposed method is superior to the Maximum Entropy 
method with moments estimated by the Monte Carlo method. New theoretical results are 
illustrated in numerical examples.
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1. Introduction

The Multilevel Monte Carlo Method (MLMC) is a recently established technique for efficient computation of an observ-
able’s statistics by approximate sampling in the case when generation of samples of different accuracy is possible. The 
method is particularly advantageous for complex problems with low regularity, typically resulting in high memory and CPU 
time demands. The idea is based on the observation that coarse sample approximations can be used as control variates 
for more accurate sample approximations and thereby reduce the variance of the Monte Carlo estimator. This family of 
methods has been introduced by M. Giles [1] for Itô stochastic differential equations arising in mathematical finance after 
similar ideas have been published in the earlier work by S. Heinrichs [2] on numerical quadrature. Since then MLMC has 
been extended to elliptic PDEs [3,4], parabolic problems [5], conservation laws [6], variational inequalities [7,8], multiscale 
PDEs [9], Kalman filtering [10] and other fields. The recent work [11] contains a recipe for an efficient evaluation of central 
statistical moments of arbitrary order. The aim of the present article is the further extension of the MLMC methodology for 
estimation of probability density functions.

Setting up probability density functions (PDF) on the basis of incomplete information on the observable is a prominent 
problem in statistics and information theory. One way to solve it is to recover the PDF from a truncated sequence of sta-
tistical moments (see the recent work by Giles et al. [12] for an alternative approach). This task (also known as solving 
the truncated moment problem) is by no means trivial and has been extensively studied in measure and probability the-
ory [13–16]. It is well known that depending on the prescribed moments, the truncated moment problem may have no 
solution or multiple (infinitely many) solutions. The latter is typically the case when the truncated sequence of moments 
is admissible, i.e. it corresponds to some PDF (ruling out the case of negative even-order monomial moments and similar 
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incompatibilities). However, in the presence of significant statistical and approximation errors, the sequence of estimated
moments may become inadmissible even when the sequence of exact moments is admissible.

Assuming that the truncated moment sequence is admissible, one needs a criterion to select a PDF which is the “most 
appropriate” among infinitely many solutions to the truncated moment problem. The strategy of selecting the least bi-
ased estimate brings us to the concept of the Maximum Entropy (ME) method [17]. The ME solution is the (nonnegative) 
maximiser of the Shannon entropy constraint at the prescribed moment values. Obviously, the error of this approximation 
depends on the number of statistical moments and the accuracy of the estimated moments. Under appropriate assumptions 
the original constraint Maximum Entropy formulation is equivalent to the matching of moments with a density function 
whose logarithm is approximated by a polynomial. References [18,19] contain a rigorous error analysis of this class of ME 
methods, [18] also combines it with the Monte Carlo approach. The purpose of this work is to combine the Maximum 
Entropy approach with the Multilevel Monte Carlo estimation of moments and develop a rigorous error analysis in terms 
of i) the number of statistical moments, ii) statistical error and iii) discretization error. We derive complexity estimates 
for the proposed approach, test its performance on a set of synthetic problems with known PDFs, and demonstrate its 
applicability in a more realistic context: on a problem modelling contact of an elastic membrane with a rough random 
obstacle.

The outline of the paper is as follows. After a brief introduction to the Multilevel Monte Carlo and the Maximum Entropy 
methods in Section 2 we give a complete a priori error analysis for the proposed method in Section 3. In particular, we con-
sider three different approximation methods for the set of the statistical moments: the Monte Carlo method based on exact 
sampling, the Monte Carlo method based on approximate sampling, and the Multilevel Monte Carlo approach. The error 
estimates naturally depend on the number of statistical moments, the sample size and the level of accuracy for approximate 
samples. In Section 4 we identify the optimal relation between these parameters and derive error-versus-cost relations for 
the three aforementioned methods. In Section 5 we give a series of numerical experiments illustrating convergence of the 
suggested Maximum Entropy approximations and compare them with a variant of Kernel Density Estimators available from 
the literature.

In the following, ln(·) stands for the natural logarithm. We use a convention that for two scalar quantities f and g the 
notation f � g means that there exists a nonnegative constant C independent of the approximation parameters such that 
f ≤ C g . The notation f ∼ g is equivalent to f � g and g � f .

2. Preliminaries

In this section we recall some preliminary information needed for the subsequent analysis, see e.g. [20] and the refer-
ences therein for the general framework of the multilevel Monte Carlo method (we utilise the notations from [8,11]), and 
[18,19,21] for the description of the Maximum Entropy method.

2.1. Multilevel Monte Carlo method

Suppose (�, �, P) is a probability space and X is a real-valued random variable which is not available for direct sam-
pling. Instead, there exists an approximation X� to X , so that samples Xi

� of X� can be generated. In this case the mean 
E[X] can be approximated by the sample average E M [X�] := 1

M

∑M
i=1 Xi

� of iid samples Xi
� admitting the decomposition of 

the mean square error (MSE)

‖E M [X�] −E[X]‖2
L2 = |E[X − X�]|2 + 1

M
Var[X�] (1)

where Var[X�] is the variance of X� . The idea of the two-level Monte Carlo approach is to use samples from a coarser 
approximation X�−1 to reduce the variance of the estimator. Indeed, for the two-level estimator it holds that

‖E M�
[X� − X�−1] + E M�−1 [X�−1] −E[X]‖2

L2 = |E[X − X�]|2

+ 1

M�

Var[X� − X�−1] + 1

M�−1
Var[X�−1]

where E M�
[X� − X�−1] and E M�−1 [X�−1] are based on independent samples.

This situation occurs for example when X depends on a solution of an ODE or a PDE which is not available in closed 
form, but can be computed approximately, e.g. by the Finite Element Method or another numerical approximation method. 
In this setting the parameter � plays the role of a discretization parameter. It is plausible that the samples of the fine 
approximation X� are better approximations to samples of X , but are typically more expensive to compute than samples of 
the coarse approximation X�−1. The Multilevel Monte Carlo Method extends the two-level approach to multiple levels. In 
particular, the multilevel sample mean estimator is defined as

EML[X] :=
L∑

�=1

E M�
[X� − X�−1], X0 := 0.
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