
Journal of Computational Physics 311 (2016) 87–113

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A 3D, fully Eulerian, VOF-based solver to study the interaction 

between two fluids and moving rigid bodies using 

the fictitious domain method

Ashish Pathak, Mehdi Raessi ∗

Department of Mechanical Engineering, University of Massachusetts-Dartmouth, North Dartmouth, MA 02747, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 July 2015
Received in revised form 18 January 2016
Accepted 21 January 2016
Available online 26 January 2016

Keywords:
Multi-phase
Fluid–structure interaction
Volume-of-fluid
Moving rigid bodies
Multi-material reconstruction

We present a three-dimensional (3D) and fully Eulerian approach to capturing the 
interaction between two fluids and moving rigid structures by using the fictitious 
domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex 
geometry and can pierce the fluid–fluid interface, forming contact lines. The three-phase 
interfaces are resolved and reconstructed by using a VOF-based methodology. Then, 
a consistent scheme is employed for transporting mass and momentum, allowing for 
simulations of three-phase flows of large density ratios. The Eulerian approach significantly 
simplifies numerical resolution of the kinematics of rigid bodies of complex geometry 
and with six degrees of freedom. The fluid–structure interaction (FSI) is computed using 
the fictitious domain method. The methodology was developed in a message passing 
interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The 
computationally intensive solution of the pressure Poisson equation is ported to GPUs, 
while the remaining calculations are performed on CPUs. The performance and accuracy 
of the methodology are assessed using an array of test cases, focusing individually on the 
flow solver and the FSI in surface-piercing configurations. Finally, an application of the 
proposed methodology in simulations of the ocean wave energy converters is presented.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Fluid–structure interaction (FSI) can be found in many diverse areas encompassing sediment transport in rivers, fluidized 
beds, blood flow in arteries, power plant condensers, and ocean wave energy converters (WECs). In this paper, we present a 
computational framework to model FSI between two fluids and a moving rigid structure. The framework is quite general and 
applicable to many diverse FSI applications. However, our focus is on WECs. WECs have been traditionally modeled using 
the potential flow theory, where both linear [1,2] and nonlinear [3–6] models have been developed. A review on theory and 
applications of both types of models can be found in [7]. However, these methods cannot handle large topographical changes 
in the free-surface, e.g., breaking of waves around structures. Moreover, such methods employ Morison’s equation [8] to 
account for viscous drag. Empirical relations for the viscous drag coefficient exist only for simple structure geometries. 
Complex geometries will require additional wave tank tests.
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Phenomena like viscous layer separation, turbulence, wave-breaking and overtopping are critical to correct numerical 
prediction of WEC response and can only be captured by solving the full Navier–Stokes (N–S) equations, including the 
viscous term. Approaches that employ the full N–S solutions to compute FSI include body conformal methods [9–13], im-
mersed boundary (IB) methods [14,15], and fictitious domain (FD) methods [16,17]. A detailed review on different numerical 
modeling techniques of FSI can be found in [18]. In body conformal methods, the mesh is updated every time step to con-
form to the structure boundary or the free interface. The method becomes especially challenging if the boundary/interface 
is arbitrarily complex and undergoes large deformation. That issue is circumvented in IB and FD methods where the mesh 
for solving the N–S equations does not have to conform to the boundary/interface. In the IB method first developed by Pe-
skin [14], a forcing term is added to the N–S equations. In another variant of the IB method developed by Mohd-Yusof [19], 
the effect of immersed boundary is introduced by imposing velocity boundary condition at the grid points located in the 
vicinity of the interface. In the IB approach, the forces on the structure are computed by explicit integration of pressure and 
shear stresses at the immersed interface, e.g., [20]. In this regard, Hu and Joseph [21] and Fekken [22] observed that using 
an explicit scheme to compute hydrodynamic forces on the structure is unstable if mass (m) of the moving structure is less 
than the virtual mass (mv ) of the surrounding fluid accelerated by the motion of the structure, i.e., if m < mv . The explicit 
scheme will be unstable in spite of small time steps. To avoid this problem, Hu and Joseph [21] suggested alternately solving 
the equations for the structure and fluid in an iterative fashion until a convergence criterion is satisfied. The iterative proce-
dure makes the scheme computationally expensive. Hesla’s [23] combined weak formulation of the fluid–structure evolution 
obviates this iterative procedure. The formulation called the fictitious domain method was developed by Glowinski et al. [24]
using the distributed Lagrangian multiplier and later made computationally fast by Patankar et al. and Patankar [25,26]. 
The fast method of Patankar et al. was employed in a finite volume framework by Sharma and Patankar [17]. In the fast 
fictitious domain method, the structure is considered as a fictitious fluid and the N–S equations are solved in the entire 
computational domain. Rigid body velocity is then imposed in the solid domain by conserving linear and angular momenta. 
The method was used by [27–29] to study FSI. In the present work, we employ the same method to compute FSI between 
two fluids and a moving rigid body.

Most of the previous work with FD method involved a structure completely submerged in fluid, e.g. [17,24,27,29–31]. Of 
these, [29] and [30] used a fully Eulerian approach for computing both fluid and structure motions. FD method has been 
applied in 2D to surface piercing floating structures in [28,32–34]. In 3D, [16,35,36] employed the FD method to surface 
piercing floating particles, where the free surface was represented by the level set function. The particle motion, however, 
was treated in a Lagrangian fashion. We present a fully Eulerian fictitious domain methodology to compute FSI in surface 
piercing configurations, i.e., rigid structures interacting with two immiscible incompressible fluids. Here, the kinematics 
of the solid boundary and the interface between the two fluids are resolved by using the volume-of-fluid (VOF) method 
through two separate color functions. Such representation allows us to handle arbitrarily shaped and complex solid bodies. 
The proposed methodology employs a single fully Eulerian finite volume grid for moving the structure and the two fluids. 
The Eulerian implementation of the FD method offers some advantages:

• It obviates the need for transfer functions, otherwise needed in Lagrangian treatment of the rigid body motion, to 
interpolate between Eulerian background grid and the Lagrangian nodes attached to the rigid body.

• Relying on the Eulerian transport schemes, e.g., the VOF method of Youngs [37,38], simplifies appreciably the six degree-
of-freedom (DOF) position update of the rigid body. Otherwise, in a Lagrangian framework, update of the rotational 
positions of a non-spherical body becomes a rather cumbersome task involving either Euler’s angles or quaternions. 
Recently, van Wachem et al. [39] implemented quaternion rotation to study the FSI involving non-spherical particles.

• Phase change processes can be easily handled by an Eulerian approach where the solid phase is represented by a color 
function such as VOF [29].

There are some challenges in implementing a fully Eulerian FD method to surface piercing configurations. In such config-
urations, there can exist computational cells that contain three phases (solid and the two fluids). Such cells require special 
treatment to reconstruct the interfaces and transport mass. We use the 3D error-minimization VOF method formulated by 
Pathak and Raessi [40] to reconstruct the phase interfaces and transport mass in three-phase cells. An alternative approach 
can be the moment-of-fluid (MoF) method first proposed by Ahn and Shashkov [41], which requires additional information 
in the form of cellwise centroid position of each phase. Recently, Li et al. [42] presented a MoF approach to track centroids 
along with volume fractions. The method [40] adopted in the present work requires only the available volume fraction dis-
tribution to perform interface reconstruction in three-phase cells. Furthermore, the density ratio among the three phases 
can be arbitrarily large. If not treated properly, non-physical deformations can be observed at the phase interfaces [43,44]. 
We employ the consistent scheme proposed by Rudman [45] that can handle simulations involving large density ratios. In 
this scheme, mass and momentum are transported in a tightly coupled consistent fashion. The formulation is explained in 
Section 3.3.

In several previous studies, e.g., [22,46], involving free surfaces, the N–S equations are solved only for the water phase. 
The effect of air is considered via pressure and shear stress boundary conditions. Such approach might not be appropriate 
for modeling phenomena like wave-breaking. Iafrati [47] showed significant dissipation of energy occurring in the air phase 
via formation of large scale dipoles during wave-breaking. The methodology proposed in the present paper solves the full 
N–S equations in both air and water phases making it suitable for modeling phenomena like breaking of waves around 
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