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The correction procedure via reconstruction (CPR, formerly known as flux reconstruction) 
is a framework of high order methods for conservation laws, unifying some discontinuous 
Galerkin, spectral difference and spectral volume methods. Linearly stable schemes were 
presented by Vincent et al. (2011, 2015), but proofs of non-linear (entropy) stability in this 
framework have not been published yet (to the knowledge of the authors). We reformulate 
CPR methods using summation-by-parts (SBP) operators with simultaneous approximation 
terms (SATs), a framework popular for finite difference methods, extending the results 
obtained by Gassner (2013) for a special discontinuous Galerkin spectral element method. 
This reformulation leads to proofs of conservation and stability in discrete norms associated 
with the method, recovering the linearly stable CPR schemes of Vincent et al. (2011, 2015). 
Additionally, extending the skew-symmetric formulation of conservation laws by additional 
correction terms, entropy stability for Burgers’ equation is proved for general SBP CPR 
methods not including boundary nodes.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the field of computational fluid dynamics (CFD), low-order methods are generally robust and reliable and therefore 
employed in practical calculations. The main advantage of high-order methods towards low-order ones is the possibility 
of considerably more accurate solutions with the same computing cost, but unfortunately they are less robust and more 
complicated. In recent years many researchers focus on this topic. There has been a surge of research activities to improve 
and refine high-order methods as well as to develop new ones with more favourable properties.

We consider in this paper the correction procedure via reconstruction (CPR) method using summation-by-parts (SBP) op-
erators. The CPR combines the flux reconstruction (FR) approach developed by Huynh [13] and the lifting collocation penalty
(LCP) by Wang and Gao [24].

Huynh [13] introduced the FR approach to high-order spectral methods for conservation laws in one space dimension 
and its extension to multiple dimensions using tensor products in 2007. For the case of one spatial dimension, the ansatz 
amounts to evaluating the derivative of a discontinuous piecewise polynomial function by using its straightforward deriva-
tive estimate together with a correction term. Wang and Gao [24] generalised the FR approach in 2009 to lifting collocation 
penalty methods on triangular grids. Later, the authors involved in the construction of these methods combined the names 
in the unifying framework of correction procedure via reconstruction (CPR) methods, see [14]. The CPR creates a framework 
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unifying several high-order methods such as discontinuous Galerkin (DG), spectral difference (SD) and spectral volume (SV) 
methods. These connections were already pointed out and investigated in more detail in [1,4,28].

A linear (von Neumann) stability analysis of FR schemes was carried out already by Huynh [13] and in extended form by 
Vincent, Castonguay and Jameson [21]. A one-parameter family of linearly stable schemes in one dimension was discovered 
by the same authors [22] using an energy method and extended in 2015 to multiple-parameter families [23]. Extensions of 
the one-parameter family to advection–diffusion problems and triangular grids were published by the same groups [2,3,25].

The analysis of nonlinear stability for CPR methods is far more complex and not as advanced as in the linear case. First 
results are available in [16,26,27].

The application of summation-by-parts (SBP) operators in the CPR framework supplies a new perspective here.
In the context of finite difference (FD) methods, summation-by-parts operators with simultaneous approximation terms

(SATs) provide a suitable way to derive stable schemes in a multi-block fashion enforcing boundary conditions in a weak 
way. They enable the imitation of manipulations of the continuous problem for the discrete method and are thus able to 
translate results like well-posedness to its discrete counterpart stability. Review articles from Svärd and Nordström [19] and 
Del Rey Fernández, Hicken, and Zingg [6] provide an insight in the development over the last decades and recent results. 
There is a strong connection of SBP operators with both skew-symmetric formulations of conservation laws as a means to 
prove conservation and stability [7], and quadrature rules [12]. Recently, Gassner et al. applied the SBP SAT framework to 
a particular discontinuous Galerkin spectral element method (DGSEM) to prove stability and discrete conservation for different 
systems of conservation laws, see inter alia [8,9,18,11]. Another extension of SBP operators has been presented by Del Rey 
Fernández et al. [5], based on a numerical setting and allowing general operators, connected with quadrature rules.

Here, we use the SBP framework in the general CPR setting. We are able to demonstrate all well-known properties, which 
have already been proven, but we can further extend the CPR method and show conservation and stability in a nonlinear 
case, see section 4.

The paper is organised as follows. The SBP and CPR frameworks will be briefly explained in section 2. In the next section, 
we apply SBP operators in CPR methods and revisit the results of Vincent et al. [22,23] for constant velocity linear advection.

In section 4, we focus on Burgers’ equation and prove both discrete conservation and stability for a skew-symmetric 
formulation and Lobatto–Legendre nodes, revisiting the results of [8].

Additionally, we suggest a generalisation of the CPR method to get stability for a general SBP basis, extending the skew-
symmetric formulation and being both provably stable and conservative. Numerical test cases are used to confirm the 
theoretical results. Finally, we discuss open problems and give an outlook on future work.

2. Existing formulations for SBP operators and CPR methods

Both finite difference (FD) SBP methods and CPR schemes are designed as semidiscretisations of hyperbolic conservation 
laws

∂t u + ∂x f (u) = 0, (1)

equipped with appropriate initial and boundary conditions.

2.1. SBP schemes

Traditionally, SBP operators are used in the FD framework. In one space dimension, a set of nodes including both bound-
ary points of the element are used to represent the solution values. Extensions to multiple dimensions are performed via 
tensor products. To compute the semidiscretisation of (1), f (u) is evaluated at each node and a difference operator is ap-
plied. The notation using vectors u for the solution values and the differentiation matrix D is very common and results in 
a finite difference approximation D f of ∂x f .

In order to be an SBP operator, the derivative matrix needs to be written as D = P−1 Q , Q + Q T = B = diag(−1, 0,

. . . , 0, 1), where P is a symmetric and positive definite matrix with associated norm ‖u‖2
P = uT P u, approximating the L2

norm, see inter alia the review [19] and references cited therein. Boundary (both of the computational domain and between 
blocks) conditions are imposed weakly, using a simultaneous-approximation-term (SAT) formulation (see inter alia [7]), in-
volving differences of desired and given values at boundary points. Thus, the SBP CPR methods described in the next chapter 
extend these schemes.

2.2. CPR methods

The FR approach in one space dimension described by Huynh [13] uses a nodal polynomial basis of order p in the 
standard element [−1, 1]. All elements are mapped to this standard element and the computations are performed there. 
Extensions to multiple dimensions are performed via tensor products. The semidiscretisation of (1) (i.e. the computation of 
∂x f (u)) consists of the following steps, see also the review [14] and references cited therein:

• Interpolate the solution to the cell boundaries at −1 and 1 (if these values are not already given as coefficients of the 
nodal basis).
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