
Journal of Computational Physics 311 (2016) 363–373

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Embedded discontinuous Galerkin transport schemes with 

localised limiters

C.J. Cotter a,∗, D. Kuzmin b

a Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
b Institute of Applied Mathematics, Dortmund University of Technology, Vogelpothsweg 87, D-44227 Dortmund, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 September 2015
Received in revised form 1 February 2016
Accepted 5 February 2016
Available online 10 February 2016

Keywords:
Discontinuous Galerkin
Slope limiters
Flux corrected transport
Convection-dominated transport
Numerical weather prediction

Motivated by finite element spaces used for representation of temperature in the 
compatible finite element approach for numerical weather prediction, we introduce locally 
bounded transport schemes for (partially-)continuous finite element spaces. The underlying 
high-order transport scheme is constructed by injecting the partially-continuous field into 
an embedding discontinuous finite element space, applying a stable upwind discontinuous 
Galerkin (DG) scheme, and projecting back into the partially-continuous space; we call this 
an embedded DG transport scheme. We prove that this scheme is stable in L2 provided 
that the underlying upwind DG scheme is. We then provide a framework for applying 
limiters for embedded DG transport schemes. Standard DG limiters are applied during 
the underlying DG scheme. We introduce a new localised form of element-based flux-
correction which we apply to limiting the projection back into the partially-continuous 
space, so that the whole transport scheme is bounded. We provide details in the specific 
case of tensor-product finite element spaces on wedge elements that are discontinuous 
P1/Q1 in the horizontal and continuous P2 in the vertical. The framework is illustrated 
with numerical tests.

© 2016 Published by Elsevier Inc.

1. Introduction

Recently there has been a lot of activity in the development of finite element methods for numerical weather prediction 
(NWP), using continuous (mainly spectral) finite elements as well as discontinuous finite elements [11,33,10,15,12,27,4,1]; 
see [26] for a comprehensive review. A key aspect of NWP models is the need for transport schemes that preserve discrete 
analogues of properties of the transport equation such as monotonicity (shape preservation) and positivity; these properties 
are particularly important when treating tracers such as moisture. Discontinuous Galerkin methods can be interpreted as 
a generalisation of finite volume methods and hence the roadmap for the development of shape preserving and positivity 
preserving methods is relatively clear (see [6] for an introduction to this topic). However, this is not the case for continuous 
Galerkin methods, and so different approaches must be used. In the NWP community, limiters for CG methods have been 
considered by [25], who used first-order subcells to reduce the method to first-order upwind in oscillatory regions, and [13], 
who exploited the monotonicity of the element-averaged scheme in the spectral element method to build a quasi-monotone 
limiter.
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In this paper, we address the problem of finding suitable limiters for the partially continuous finite element spaces for 
tracers that arise in the framework of compatible finite element methods for numerical weather prediction models [7,8,
31,29]. Compatible finite element methods have been proposed as an evolution of the C-grid staggered finite difference 
methods that are very popular in NWP. Within the UK dynamical core “Gung–Ho” project, this evolution is being driven by 
the need to move away from the latitude–longitude grids which are currently used in NWP models, since they prohibit par-
allel scalability [32]. Compatible finite element methods rely on choosing compatible finite element spaces for the various 
prognostic fields (velocity, density, temperature, etc.), in order to avoid spurious numerical wave propagation that pollutes 
the numerical solution on long time scales. In particular, in three dimensional models, this calls for the velocity space to 
be a div-conforming space such as Raviart–Thomas, and the density space is the corresponding discontinuous space. Many 
current operational forecasting models, such as the Met Office Unified Model [9], use a Charney–Phillips grid staggering in 
the vertical, to avoid a spurious mode in the vertical. When translated into the framework of compatible finite element 
spaces, this requires the temperature space to be a tensor product of discontinuous functions in the horizontal and con-
tinuous functions in the vertical (more details are given below). Physics/dynamics coupling then requires that other tracers 
(moisture, chemical species etc.) also use the same finite element space as temperature.

A critical requirement for numerical weather prediction models is that the transport schemes for advected tracers do 
not lead to the creation of new local maxima and minima, since their coupling back into the dynamics is very sensitive. In 
the compatible finite element framework, this calls for the development of limiters for partially-continuous finite element 
spaces. Since there is a well-developed framework for limiters for discontinuous Galerkin methods [3,5,6,14,16,34,17,35], in 
this paper we pursue the three stage approach of (i) injecting the solution into an embedding discontinuous finite element 
space at the beginning of the timestep, then (ii) applying a standard discontinuous Galerkin timestepping scheme, before 
finally (iii) projecting the solution back into the partially continuous space. If the discontinuous Galerkin scheme is combined 
with a slope limiter, the only step where overshoots and undershoots can occur is in the final projection. In this paper we 
describe a localised limiter for the projection stage, which is a modification of element-based limiters [24,21] previously 
applied to remapping in [23,20]. This leads to a locally bounded advection scheme when combined with the other steps.

The main results of this paper are:

1. The introduction of an embedded discontinuous Galerkin scheme which is demonstrated to be linearly stable.
2. The introduction of localised element-based limiters to remove spurious oscillations when projecting from discontinuous 

to continuous finite element spaces, which are necessary to make the whole transport scheme bounded.
3. When combined with standard limiters for the discontinuous Galerkin stage, the overall scheme remains locally 

bounded, addressing the previously unsolved problem of how to limit partially continuous finite element spaces that 
arise in the compatible finite element framework.

Our bounded transport scheme can also be used for continuous finite element methods, although other approaches are 
available that do not involve intermediate use of discontinuous Galerkin methods.

The rest of the paper is structured as follows. The problem is formulated in Section 2. In particular, more detail on 
the finite element spaces is provided in Section 2.1. The embedded discontinuous Galerkin schemes are introduced in 
Section 2.2; it is also shown that these schemes are stable if the underlying discontinuous Galerkin scheme is stable. The 
limiters are described in Section 2.3. In Section 3 we provide some numerical examples. Finally, in Section 4 we provide a 
summary and outlook.

2. Formulation

2.1. Finite element spaces

We begin by defining the partially continuous finite element spaces under consideration. In three dimensions, the el-
ement domain is constructed as the tensor product of a two-dimensional horizontal element domain (a triangle or a 
quadrilateral) and a one-dimensional vertical element domain (i.e., an interval); we obtain triangular prism or hexahe-
dral element domains aligned with the vertical direction. For a vertical slice geometry in two dimensions (frequently used 
in testcases during model development), the horizontal domain is also an interval, and we obtain quadrilateral elements 
aligned with the vertical direction.

To motivate the problem of transport schemes for a partially continuous finite element space, we first consider a com-
patible finite element scheme that uses a discontinuous finite element space for density. This is typically formed as the 
tensor product of the DGk space in the horizontal (degree k polynomials on triangles or bi-k polynomials on quadrilaterals, 
allowing discontinuities between elements) and the DGl space in the vertical. We consider the case where the same degree 
is chosen in horizontal and vertical, i.e. k = l, although there are no restrictions in the framework. We will denote this space 
as DGk × DGk .

In the compatible finite element framework, the vertical velocity space is staggered in the vertical from the pressure 
space; the staggering is selected by requiring that the divergence (i.e., the vertical derivative of the vertical velocity) maps 
from the vertical velocity space to the pressure space. This means that vertical velocity is stored as a field in DGk × CGk+1
(where CGk+1 denotes degree k + 1 polynomials in each interval element, with C0 continuity between elements). To avoid 
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