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A flux-splitting method is proposed for the hyperbolic-equation system (HES) of magne-
tized electron fluids in quasi-neutral plasmas. The numerical fluxes are split into four 
categories, which are computed by using an upwind method which incorporates a flux-
vector splitting (FVS) and advection upstream splitting method (AUSM). The method is 
applied to a test calculation condition of uniformly distributed and angled magnetic lines 
of force. All of the pseudo-time advancement terms converge monotonically and the con-
servation laws are strictly satisfied in the steady state. The calculation results are compared 
with those computed by using the elliptic–parabolic-equation system (EPES) approach us-
ing a magnetic-field-aligned mesh (MFAM). Both qualitative and quantitative comparisons 
yield good agreements of results, indicating that the HES approach with the flux-splitting 
method attains a high computational accuracy.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Quasi-neutral plasma flows appear in many practical applications such as space propulsion, astrophysics, and nuclear 
fusion [1–4]. In plasma simulations of these applications, the model of lightweight electrons is usually considered separately 
from the models of ions and neutral particles. When considering electron fluids in quasi-neutral plasmas, the space potential 
is solved by using the electron conservation equations, rather than by using Gauss’s law [5]. Because of the electrical 
neutrality, the electron number density distribution is given by the ion number density distribution. Therefore, the electron 
velocity, electron temperature, and space potential are calculated by using the conservation equations for mass, momenta, 
and energy of electrons.

The conventional approaches utilize an elliptic equation and a parabolic equation for solving for the space potential 
and electron temperature [6,7]. In what follows, this approach will be referred to as the elliptic–parabolic-equation system 
(EPES) approach. However, in the case of magnetized electrons, the EPES becomes an anisotropic diffusion problem, owing 
to magnetic confinement. Computation of this system becomes difficult owing to: 1) the anisotropy stemming from the 
large difference between diffusion coefficients in different directions and 2) the instability caused by cross-diffusion terms. 
The cross-diffusion terms are especially difficult to handle because they cause the failure of the diagonal dominance of the 
coefficient matrix. One approach toward avoiding the issue of cross-diffusion terms is to utilize a magnetic-field-aligned 
mesh (MFAM) [8]. By precisely aligning the computational mesh with the magnetic lines of force, the cross-diffusion terms 
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can be neglected because they stem from the angle between the magnetic lines of force and the mesh. However, using an 
MFAM makes it impossible to use a structured mesh for the body-fitted coordinate system and complicates the evaluation 
of fluxes on the mesh boundaries. Furthermore, once the magnetic field induced by the plasma current is solved, one needs 
to reconstruct the mesh with varying magnetic lines of force. Thus, a practical application of the MFAM is associated with 
cumbersome coding and implementation steps.

Recently, a novel approach to solving anisotropic diffusion equations has been proposed, which uses a hyperbolic-
equation system (HES) [9]. The key idea in this approach is to construct a hyperbolic system by introducing pseudo-time 
advancement terms. This approach avoids the aforementioned difficulties related to the anisotropy and cross-diffusion terms. 
It was confirmed that an anisotropic diffusion problem of space potential was robustly computed by using the HES approach. 
It was proved that the advantage of the HES approach compared with the MFAM-based approach was that it could use a 
simple structured mesh without increasing the computational cost.

Although the HES approach demonstrated advantages for calculating magnetized electron flows, there remain two is-
sues constraining the applicability of this approach. First, the HES approach was proposed only for mass and momentum 
conservation equations. To simulate plasma devices utilizing the heating of electrons for the plasma generation, the HES 
must include the energy conservation equation for deriving the electron temperature. Another issue is the presence of large 
numerical viscosity. It was reported that the HES approach had a large numerical viscosity arising from the discretization of 
cross-diffusion terms [9]. In light of these issues, the purpose of this paper was to extend the HES to include all conservation 
laws, and to find a robust method for computing the system of equations. In addition, a high-order spatial accuracy method 
was used with the HES approach for reducing the numerical viscosity. As a criterion of computational accuracy, we checked 
whether the HES approach achieves the same level of computational accuracy as the MFAM-based EPES approach.

2. Hyperbolic system of conservation laws for electron fluid

2.1. Hyperbolic-system formulation of energy conservation equation

The fundamental equations are the two-dimensional equations of electron mass, momentum, and energy conservation in 
quasi-neutral plasma. Assuming quasi-neutrality, the electron number density is equal to the ion number density. Thus, the 
electron number density is treated as a given distribution. Also, the inertia of the electron fluid is neglected in the momen-
tum conservation equation, because of frequent collisions. The detailed processes to derive the fundamental equations for 
the mass and momentum conservations can be found in Ref. [9]. Thus, this section focuses on the equations for the energy 
conservation.

Energy conservation is formulated as follows:
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where e, ne, ue, Te, φ, νion, and εion are the elemental charge, electron number density, electron velocity, electron tem-
perature, space potential, ionization collision frequency, and first ionization energy of the gas species used for the plasma 
generation, respectively. α is a coefficient to handle ionization, excitation, and radiation with a single term, and it is ex-
perimentally determined as a function of the electron temperature [10]. It is assumed that the conservation of energy also 
achieves a steady state on the ion time scale. The electron mobility tensor [μ] on a computational mesh is derived as 
follows:
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Here, me, νcol, and B are electron mass, total collision frequency, and magnetic flux density, respectively. The subscripts ||
and ⊥ denote parallel and perpendicular directions of magnetic lines of force, respectively. � is the rotation matrix, with 
the angle between the magnetic lines of force and the computational mesh.

In quasi-neutral plasmas, the plasma approximation is assumed and the space potential is calculated from the con-
servation equations for the electrons [5]. In conventional approaches, the mass and momentum conservation equations are 
integrated into an elliptic equation [6,7]. However, this equation becomes an anisotropic diffusion equation, and it is difficult 
to maintain stability while computing this equation because the cross-diffusion terms cause failure of the diagonal dom-
inance of the coefficient matrix [9]. Alternatively, the HES approach using pseudo-time advancement terms is considered. 
The HES which consists of the mass and momentum conservation equations has been proposed in Ref. [9].
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