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In this work we propose a Hybrid method with Deviational Particles (HDP) for a plasma 
modeled by the inhomogeneous Vlasov–Poisson–Landau system. We split the distribution 
into a Maxwellian part evolved by a grid based fluid solver and a deviation part simulated 
by numerical particles. These particles, named deviational particles, could be both positive 
and negative. We combine the Monte Carlo method proposed in [31], a Particle in Cell 
method and a Macro–Micro decomposition method [3] to design an efficient hybrid 
method. Furthermore, coarse particles are employed to accelerate the simulation. A particle 
resampling technique on both deviational particles and coarse particles is also investigated 
and improved. This method is applicable in all regimes and significantly more efficient 
compared to a PIC–DSMC method near the fluid regime.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The evolution of a class of collisional plasmas can be modeled by the spatially inhomogeneous Vlasov–Poisson–Landau 
(VPL) system, with the electromagnetic fields and applied magnetic fields absent,

∂t f + v · ∇x f − E · ∇v f = Q L( f , f ), (1a)

− ∇x · E = ρ(t,x) =
∫

f (t,x,v)dv. (1b)

Here f (t, x, v) is the time dependent density distribution function of the charged particles (electrons and ions) in the phase 
space (x, v), with x ∈ R

3 the spatial coordinates and v ∈ R
3 the velocity coordinates. The left hand side of (1a) describes 

the advection of particles under the electric field E, which is solved by the Poisson equation (1b). On the right hand side, 
the Landau (or Landau–Fokker–Planck) operator,

Q L( f , f ) = A

4

∂

∂vi

∫
R3

uσtr(u)(u2δi j − uiu j)

(
∂

∂v j
− ∂

∂ w j

)
f (w) f (v)dw (2)

models the binary collisions due to the long range Coulomb interaction. Here u = |v − w|, A = 2π
(

e2

2πε0m

)2
log �, with e

the charge of an individual particle, m its mass, ε0 the permittivity of free space, and log � the Coulomb logarithm.
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The small angle collisions dominate in Coulomb interaction. The Landau operator (2) is derived as the grazing limit 
of Boltzmann operator (see [10] for example) by Landau in 1936 [20]. We refer the reader to Villani [29] and the refer-
ences therein for a review of the mathematical derivation. The Landau operator inherits many properties of the Boltzmann 
operator. First, the density, momentum and energy are conserved during the collision process, i.e.

〈φQ 〉 = 0, for φ(v) = 1,v, |v|2/2,

where 〈·〉 is defined as 〈ψ〉 = ∫
R3 ψ(v) dv.

Furthermore, the entropy is dissipated

〈Q log f 〉 ≤ 0,

with the equal sign holds if and only if f is the local Maxwellian

M(t,x,v) = ρ(t,x)

(2π T (t,x))3/2
e− |v−u(t,x)|2

2T (t,x) . (3)

Here the density ρ , macroscopic velocity u and temperature T are determined by f via

〈φM(t,x,v)〉 = 〈φ f (t,x,v)〉 , for every x, t, (4)

with φ = 1, v, |v|2/2.
The numerical schemes for the VPL system (1) have been studied extensively. Depending on how to represent the veloc-

ity space, these methods can be categorized into two classes, the deterministic (also known as grids based or continuum) 
methods and probabilistic (also known as particles based) methods. Various techniques have been developed for determinis-
tic methods. We refer the user to [15] and the references therein for a recent review. However all the deterministic methods 
are suffered from the curse of dimensionality. The full system (1) describes a seven dimensional problem (3D in space, 3D in 
velocity and 1D in time), which leads to tremendous cost of grids based methods.

In contrast, the probabilistic methods, which use particles to represent the velocity space, have the advantage of dimen-
sion independence. These methods first studied by Bird [4], are known as Direct Simulation Monte Carlo (DSMC) methods, 
for rarefied gas. In plasma simulation, Particle in Cell (PIC) methods [13,17,5] are widely used in solving the collisionless 
Vlasov–Poisson system (i.e. system (1) with Q L = 0 in the right hand side). The Landau operator (2) is solved by Monte Carlo 
methods, such as Takizuka–Abe method [28] (henceforth TA) and Nanbu’s method [22]. Bobylev and Nanbu [6], Bobylev and 
Potapenko [7] proposed a general framework in designing particle methods for (2). The PIC–DSMC methods, which combine
the PIC methods for the advection part and DSMC methods for the collision part, have been widely used in solving the VPL 
system (1).

However the particle methods become very inefficient near the fluid regime, where the distribution f is close to the lo-
cal equilibrium M . The reason is that the computation is mainly spent on the collisions between particles sampled from M . 
These collisions have no net effect since Q L(M, M) = 0. A hybrid method is more favorable in this regime, which decom-
poses the distribution as

f (t,x,v) = M(t,x,v) + fd(t,x,v). (5)

The equilibrium M is evolved by a fluid solver and the deviation fd is solved by particles. Here we allow fd < 0 and use 
positive and negative deviational particles to represent fd .

There have been several related works. In gyrokinetic simulations, the so-called δ f methods [8,21,16,14] have been 
proven to be efficient in collisionless regime. Hybrid methods with weighted deviational particles have also been designed 
when the collisions are modeled by BGK operator [12] and linear Fokker–Planck operator [27]. However all these methods 
are very difficult to efficiently handle binary collisions. Recently Caflisch et al. [9] and Ricketson et al. [25] studied the 
thermalization/dethermalization methods with fd(v) ≥ 0 for the spatial homogeneous Coulomb collisions. However they are 
difficult to be generalized to the inhomogeneous system (1) without allowing fd to be negative. For rarefied gas, Hadji-
constantinou and co-workers [1,30,2,18,19,23] have studied a low-variance deviational simulation Monte Carlo (LVDSMC) 
method in which fd could be negative. However, as discussed in Section 2.1.2, the extension to long range Coulomb colli-
sions leads to dramatic growth of particle numbers and hence a numerical instability.

A different Monte Carlo method with deviational particles for Coulomb collisions has been designed by the authors in 
[31]. By introducing coarse particles as a rough approximation of f , a large number of collisions are combined efficiently 
and the growth of particle numbers is reduced from the numerical scale to physical scale. In this work we seek to extend 
the method in [31] to the inhomogeneous VPL system (1).

The goal of this work is to design a hybrid method with deviational particles which (a) is applicable in all regimes and 
(b) is much more efficient than the PIC–DSMC method near the fluid regime. The starting point is an operator splitting 
between the collision part and the advection part. The collision part is solved as in the homogeneous case cell by cell. 
As for the advection part, we combine a macro–micro projection method [3] and a Particle-In-Cell method to evolve the 
macroscopic quantities and all particles. As a result, the number of particles grows in the physical scale and a particle 
resampling method is applied on both deviational and coarse particles to further control the growth.
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