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This paper presents an efficient algorithmic implementation of the iterative minimization 
formulation (IMF) for fast local search of transition state on potential energy surface. The 
IMF is a second order iterative scheme providing a general and rigorous description for the 
eigenvector-following (min-mode following) methodology. We offer a unified interpretation 
in numerics via the IMF for existing eigenvector-following methods, such as the gentlest 
ascent dynamics, the dimer method and many other variants. We then propose our new 
algorithm based on the IMF. The main feature of our algorithm is that the translation step 
is replaced by solving an optimization subproblem associated with an auxiliary objective 
function which is constructed from the min-mode information. We show that using an 
efficient scheme for the inexact solver and enforcing an adaptive stopping criterion for 
this subproblem, the overall computational cost will be effectively reduced and a super-
linear rate between the accuracy and the computational cost can be achieved. A series of 
numerical tests demonstrate the significant improvement in the computational efficiency 
for the new algorithm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many phenomena in physics, material sciences, chemistry and biology can be abstractly formulated as a system that 
navigates over a complex potential energy landscape of high or infinite dimensions. Rare events, which correspond to infre-
quently hops between different local minima of the potential function, have attracted extensive research work to understand 
quite many important physical processes in natural sciences and engineering. The examples include chemical reactions, 
phase transitions of condensed matter, etc. To study rare event, one of the fundamental questions is to find energy barriers 
and transition states. The barrier is the energy difference between a local minimum and its transition state. The transition 
state is a critical point on the potential energy surface with exactly one negative Hessian eigenvalue. We call this type of 
saddle points as index-1 saddle points. Furthermore, finding saddle points provides valuable information for many bifur-
cation problems, especially for subcritical bifurcations, since the unstable manifold of index-1 saddle point connects two 
locally stable solutions.

While locating potential energy minima can routinely be done, at least for local search, thanks to the significant progress 
of nonlinear optimization, finding saddle points can be extremely difficult and remains one of the major challenges for large 
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systems. Several methods exist to locate the transition states. They can be divided into surface-walking algorithms, which 
use only local quantities around one point on the potential energy surface, and the chain-of-states methods that connect dif-
ferent points on the surface. The nudged elastic band method [1] is an example of the chain-of-state methods and the string 
method [2–4] presents an elegant dynamical description and a convenient numerical technique in the path space for such 
chain-of-states methods. For the surface-walking algorithms, the early developments include quasi-Newton methods intro-
duced by Cerjan and Miller [5] and later modified by Simons and co-workers and Wales [6]. One of these methods widely 
used for ab initio molecular calculations is the partitioned rational function optimization algorithm of Baker [7], which uti-
lizes either an approximate or exact Hessian matrix. For large systems exact Hessians have to be calculated regularly. If the 
Hessian matrix cannot be determined analytically, the second derivative matrix has to be determined numerically. For large 
systems this step often becomes prohibitively expensive.

There has been an idea of “eigenvector-following” methodology which uses only the min-mode of the Hessian ma-
trix and moves the system uphill along this min-mode direction. The min-mode is the eigenvector corresponding to the 
minimal Hessian eigenvalue. This idea of gently ascending potential energy surface following such eigenvectors can be 
dated back to Crippen and Scheraga in 1971 [8]. There have been significant developments of new algorithms based on 
eigenvector-following methodology, for instance, the dimer method [9] and its many variants [10–12], the activation–
relaxation techniques and the variants [13–15]. Instead of calculating the full Hessian matrix these algorithms calculate 
only the lowest eigenvalue and the corresponding eigenvector by finite difference scheme or Lanczos methods. Numerous 
applications for practical problems have proven that these eigenvector-following methods generally run faster and converge 
better than the previous Newton–Raphson root-finding methods.

Along with the substantial progress in algorithmic developments and applications of this popular eigenvector-following 
methodology, a first rigorous mathematical analysis for the local convergence to index-1 saddle point is established in 
[16] by formulating eigenvector-following methodology as a coupled dynamical system, with the name “gentlest ascent 
dynamics” (GAD). Index-1 saddle point on the potential energy surface becomes a locally stable equilibrium point in the 
GAD, thus the local (linear) convergence to index-1 saddle points is guaranteed. The applications of the GAD include [17] and 
[18]. A different but similar dynamical system named shrinkage dimer dynamics is also pursued in [19] by introducing one 
more dimer length variable. The method in [20] and the application in [21] combined a modified string method technique 
in which one end of the string follows a modified dynamics and then the inexact Newton method.

Based on the work of the GAD, we recently proposed a new description of the eigenvector-following’ methodology in 
[22]. This new model is an iterative mapping and is named as “iterative minimization formulation”, or IMF in short. In each 
iteration of the IMF, an auxiliary function is constructed as a new objective function, based on the local quantities around 
the current point on the potential energy. Then a local minimizer of this objective function is assigned as the new position 
for the next iteration. Theoretically, this iterative scheme can be locally described by a continuously differentiable mapping 
near the saddle point. We proved that the iterative mapping defined in such ways has quadratic convergence rate. This rate 
is the best rate for all numeral schemes based on the eigenvector-following methodology by using only the min-mode.

In the work of the IMF [22], we did not specify how to solve the subproblem of minimizing auxiliary objective function 
at each iteration, which is a crucial step in computations. This article is to address this practical issue of algorithm design 
for the IMF. It is already observed in [22] that the GAD is equivalent to solving the minimization subproblem in the IMF 
by using a single steepest descent step. We continue in this article to reveal the connections of other eigenvector-following 
based methods to the traditional optimization schemes for the subproblem in the IMF. See the detailed discussion in the 
Appendix A. So, the IMF is a quite general and rigorous mathematical description and offers a unified description of various 
algorithms related to the eigenvector-following methodology.

The contribution of this paper is to present an efficient and easy-to-implement algorithm for the IMF. To alleviate the 
computational bottleneck for the IMF, we propose an adaptive stopping rule for solving the subproblem of minimizing the 
new objective function at each iteration. Meanwhile, we propose an efficient proposal for the calculation of the gradient 
of the new objective function, which requires the minimal number of force calculations of the original potential function. 
Therefore, with our stopping rule and gradient calculation scheme, any gradient-based optimization solver can be exploited 
in principle as a good inexact solver for the subproblem. We call our proposed algorithm as “iterative minimization algo-
rithm” (IMA). The main advantage of the IMA is its efficiency: on the one side, it explores the quadratic iterative rate of the 
IMF and on the other side, it minimizes the computational cost for the subproblem solver. As a result, the IMA not only 
needs less number of the computation-intensive rotation steps, but also reduces the overall computational cost to achieve a 
prescribed accuracy.

The rest of this paper is organized as follows. In Section 2, we review the iterative minimization formulation Our main 
work of the new algorithm is presented in Section 3. Section 4 includes several numerical examples. Section 5 is the 
concluding summary. The Appendix A is about the analysis of a series of existing algorithms by the perspective of the IMF.

2. Iterative minimization formulation

2.1. The problem

Let M be a Hilbert space with norm | · | and inner product 〈·, ·〉 in its tangent space T M . Given a differentiable (and 
sufficiently smooth) potential function V : M → R. The vector field ∇V generates the gradient descent flow on M ,
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