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Usual space- and time-staggered (STS) “leap-frog” Lagrangian hydrodynamic schemes—such 
as von Neumann–Richtmyer’s (1950), Wilkins’ (1964), and their variants—are widely used 
for their simplicity and robustness despite their known lack of exact energy conservation. 
Since the seminal work of Trulio and Trigger (1950) and despite the later corrections 
of Burton (1991), it is generally accepted that these schemes cannot be modified to 
exactly conserve energy while retaining all of the following properties: STS stencil with 
velocities half-time centered with respect to positions, explicit second-order algorithm 
(locally implicit for internal energy), and definite positive kinetic energy.
It is shown here that it is actually possible to modify the usual STS hydrodynamic schemes 
in order to be exactly energy-preserving, regardless of the evenness of their time centering 
assumptions and retaining their simple algorithmic structure. Burton’s conservative scheme 
(1991) is found as a special case of time centering which cancels the term here designated 
as “incompatible displacements residue.” In contrast, von Neumann–Richtmyer’s original 
centering can be preserved provided this residue is properly corrected. These two schemes 
are the only special cases able to capture isentropic flow with a third order entropy error, 
instead of second order in general.
The momentum equation is presently obtained by application of a variational principle to 
an action integral discretized in both space and time. The internal energy equation follows 
from the discrete conservation of total energy. Entropy production by artificial dissipation 
is obtained to second order by a prediction–correction step on the momentum equation.
The overall structure of the equations (explicit for momentum, locally implicit for internal 
energy) remains identical to that of usual STS “leap-frog” schemes, though complementary 
terms are required to correct the effects of time-step changes and artificial viscosity 
updates.
In deriving these schemes, an apparently novel approach of “flux-in-time” was introduced 
to correct numerical residues and ensure energy conservation. This method can be applied 
to essentially any numerical scheme whenever required or desired provided space and time 
numerical consistency is preserved.
Numerical test cases are presented confirming the conservative character of the new CSTS 
schemes down to computer round-off errors, and showing various improvements compared 
to the standard von Neumann–Richtmyer and Wilkins STS schemes, mostly on shock levels, 
shock velocities, singularity induced distortions, and CFL stability limits.
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Table 1
Kinetic energy definitions and properties of various space-staggered Lagrangian schemes from Trulio and Trigger [7], Burton [9], and as aimed at in the 
present work.

Ref. Kinetic energy (up)2 Restrictions for exact energy conservation Form of momentum equation

Trulio and Trigger [7]:

Eq. 6b 1
2 un−1/2

p · un+1/2
p �t constant and q = 0 (order 1 otherwise) Explicit on un−1/2

p (VNR)

Eq. 6c 1
2 un−1/2

p · un+1/2
p �t constant (order 1 otherwise) Explicit on un−1/2

p (implicit on qn+1
c )

Eq. E1 1
2 un−1/2

p · un+1/2
p None Explicit on un

p

Eqs. R1–6 1
2 (un

p)2 None Implicit on un
p (also [8, eq. 4.2.6])

Burton [9]:

Eq. 5.2 1
2 un−1/2

p · un+1/2
p Time centering of positions with respect to 

velocities, see Fig. 1c and (1)
Explicit on un−1/2

p

& Eq. 5.4 1
2 (un−1/2

p )2

Here:

(7) 1
2 (un−1/2

p )2 None Explicit on un−1/2
p

1. Introduction

1.1. Present understanding of energy conservation in Lagrangian schemes

Over the nearly 70 years since the first practical calculations were carried out in weapons laboratories, the mathematical 
principles of numerical schemes for Computational Fluid Dynamics (CFD) have experienced very profound evolution: beyond 
the necessary adaptations to the staggering increase in computer power during this time, a major change has been a pro-
gressive drift away from the numerical options of the first schemes of von Neumann and Richtmyer [1–4]—here designated 
as “VNR.”

The original VNR scheme [4] was designed as a simple finite differences Lagrangian algorithm—i.e. with an explicit 
momentum equation and a locally semi-implicit energy equation—which achieves second-order space-and-time accuracy 
through a “leap-frog” space-and-time staggering (STS) of variables. Although it exactly conserves mass and momentum, it 
conserves energy only to second order—first in the presence of shocks—and it may produce spurious transient oscillations 
as shock capture is achieved by adding artificial viscosity. Further developments extended the scheme in various directions 
(multiple dimensions [5,6], elastic–plastic behavior [5], Arbitrary Lagrange–Euler [6], etc.) but, under the STS stencil constraint, 
the lack of energy conservation had not received a satisfactory correction until the early 1990’s. This was a major drawback 
in the presence of shocks, where correspondingly inaccurate Hugoniot jump conditions lead to zero order errors on their 
positions and magnitudes.

One decade after the VNR scheme was published, Trulio and Trigger provided the first 1D analysis of the energy non-
conservation issue [7] with suggestions of modified schemes to regain it. Their conclusions are summarized in Table 1 where 
masses, velocities, and per mass kinetic energies are designated by m, u , and u2, and labeled at nodes by p, and at integer 
and half-integer time steps by n and n + 1/2. Since then, common wisdom has thus been that unconditional exact energy 
conservation—i.e. without restrictions on time step other than CFL—can only be achieved if velocity is centered at integer 
labeled time instants and if either: i) the (non-local) momentum equation is implicit in order for the kinetic energy to be a 
positive definite quadratic form of velocity, or ii) the kinetic energy is defined by a non-positive quadratic form of velocity in 
order for the momentum equation to be explicit.

However, in 1991 Burton revisited these findings—together with issues of nodal mass definition, variable time step, 
pressure gradient definition, and multiple dimensions—and provided exact energy conservation with an explicit momentum 
equation and a positive definite quadratic form for the kinetic energy [9, eqs. 4.6, 5.4 & 6.2] (see Table 1). This is achieved 
by considering the energy balance at half-integer labeled times, where kinetic energy is simply defined as squared velocity, 
but where internal energy must be inferred from its value at integer labeled times by correcting for pressure work over 
half time steps. However, when the time step is not constant, Burton’s scheme requires the somewhat unusual centering 
of positions at times tn with respect to velocities at times tn+1/2—instead of the more intuitive centering of velocities with 
respect to positions—or

tn = 1
2 (tn+1/2 + tn−1/2) , instead of tn+1/2 = 1

2 (tn+1 + tn) , (1)

as shown in Fig. 1 below. In some cases, this may somewhat impact robustness and CFL limitations because now, in contrast 
to the original STS scheme the time step is estimated an extra half-time step earlier—for instance from the speed of sound cn

for time step δtn+1 instead of δtn+1/2.
Puzzlingly, Burton’s correction appears to have been little investigated, let alone included in CFD codes, despite its sig-

nificant impact on shock accuracy and its marginal cost even when weighed by possibly minor defects. Yet, the extensive 
usage of the original VNR explicit scheme and its variants in non-conservative form persists to date, motivated by simplicity 
or legacy and notwithstanding the artifacts appearing for instance under strong shocks. At the same time, conservation 
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