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This paper is concerned with a lesser-studied problem in the context of model-based, 
uncertainty quantification (UQ), that of optimization/design/control under uncertainty. The 
solution of such problems is hindered not only by the usual difficulties encountered in 
UQ tasks (e.g. the high computational cost of each forward simulation, the large number 
of random variables) but also by the need to solve a nonlinear optimization problem 
involving large numbers of design variables and potentially constraints. We propose a 
framework that is suitable for a class of such problems and is based on the idea of recasting 
them as probabilistic inference tasks. To that end, we propose a Variational Bayesian 
(VB) formulation and an iterative VB–Expectation-Maximization scheme that is capable 
of identifying a local maximum as well as a low-dimensional set of directions in the 
design space, along which, the objective exhibits the largest sensitivity. We demonstrate 
the validity of the proposed approach in the context of two numerical examples involving 
thousands of random and design variables. In all cases considered the cost of the 
computations in terms of calls to the forward model was of the order of 100 or less. The 
accuracy of the approximations provided is assessed by information-theoretic metrics.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction – motivation

With the increased computational capabilities afforded by the utilization of peta-scale computing resources throughout 
engineering and the physical sciences, the issue of confidence in simulation results has come at the center of current 
research. The objective of obtaining an average computational representation of a physical process is being replaced by the 
new paradigm of predictive simulations where the analysis delivers a quantification of uncertainty due to stochasticity in 
parameters, data and models. Decisions that are based on high-fidelity computational simulations due to their potential 
economic or societal impact cannot be accepted without quantitative information on the confidence in the computed result.

The field of model-based, uncertainty quantification has seen marked advances in recent years. Naturally, the majority 
of the efforts have been directed towards forward uncertainty propagation i.e. the computation of output statistics given 
input uncertainties. While several important challenges still remain unanswered, the ultimate objective of the analysis of 
physical processes and engineering systems is to enable their control and optimization with respect to design objectives. 
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Problems of optimization in the presence of uncertainty have attracted much less attention. On one hand, this is because 
they encompass all the difficulties encountered in uncertainty propagation. Amongst these, the most important stems from 
the complexity of the forward problem and the increased computational expense associated which each call to the forward 
solver. It is generally the number of such forward solves that determines the overall computational cost. Secondly, the 
high-dimensionality of the vector of random variables. Especially in cases where spatiotemporal discretizations of random 
processes and fields are necessary, one must frequently deal with thousands of random variables. Furthermore, in stochastic 
optimization problems, there is the additional need to solve a demanding, nonlinear optimization problem which might 
itself involve thousands of design variables as well as equality/inequality constraints.

Significant advances have been achieved in deterministic optimization and control of complex systems particularly with 
the development of adjoint-based techniques [1–3] as well as by making use of reduced-order modeling strategies [4,5]. 
Nevertheless their direct application in the stochastic counterparts of these problems would be infeasible or impractical as 
the integration with respect to uncertainties poses an insurmountable task.

While decision-making under uncertainty was pioneered in the 1950s [6], applications to large-scale physical models 
are scarce due to the inherent computational difficulties. Advances in stochastic/robust control and optimization [7–9] or 
reliability-based design optimization [10–12] are generally applicable to small systems or rely on specific system structure. 
Techniques using surrogate models and response surfaces [13] or generalized Polynomial Chaos expansions [14] might fail 
to provide good approximations to the response quantities of interest in the optimization if the number of uncertainties 
is large, irreducible or non-Gaussian. Furthermore, there is a difficulty in quantifying the error introduced due to the dis-
crepancy between the surrogate and reference model. A critical problem in that respect is the ability to deal with noisy 
evaluations of the objective functions, its gradient and higher-order derivatives.

The stochastic optimization framework advocated in the present paper is motivated by the following desiderata:

• The ability to seamlessly utilize deterministic simulators and deterministic optimization components such as a first and 
second order parametric derivatives of model outputs.

• The ability to deal with high-dimensional vectors of random and design variables.
• Least possible number of forward solutions for the same accuracy level.
• The ability to quantify the sensitivity of the expected value/gain/utility to variations in the design variables in the 

vicinity of the optimum and to provide information on the design features that lead to the largest decay in the expected 
utility.

• The ability to utilize approximate, reduced-order models or surrogates in order to expedite the solution process.

The objective functions considered in this paper can be written in a general form as:

V (z) =
∫

U (θ , z) pθ (θ) dθ , (1)

where θ ∈ R
dθ denotes the vector of random variables with a probability density function pθ (θ) and z ∈ R

dz denotes the 
vector of design variables. The function U (θ , z) depends on the output of the mathematical model and in turn, implicitly 
depends on random and design variables. Each evaluation of U (θ , z) implies a forward model solution which is assumed 
expensive as in most challenging applications. Naturally the optimization problem can be augmented with constraints with 
regards to the design variables as it will be demonstrated in the stochastic topology optimization problem that will be 
considered in the last section. We adopt the term gain function (opposite of a loss function) for U (θ , z) and expected gain 
for V (z) and, without loss of generality, pose the corresponding problem as one of maximization [15].

The formulation above is quite general and can be readily adapted to cases of practical interest. For example if U (θ , z) =
1A(θ, z) is the indicator function of an event A of interest (e.g. non-failure, or non-exceedance of a response threshold) 
then maximizing V (z) in Equation (1) is equivalent to the maximization of the probability associated with the event A
(similarly one can minimize the probability of event A by employing the indicator function of the complementary even 
Ac in place of U in Equation (1)). The case that would be of principal concern in this paper involves gain functions of the 
following form2:

U (θ , z) = exp{−1

2
‖ Q 1/2(utarget − u(θ , z))‖2}, (2)

where u(θ , z) ∈ R
n denotes an output vector of interest (i.e. displacements, velocities, temperature etc.), utarget ∈ R

n a tar-
get/desired response and Q a positive definite matrix of choice. In the examples considered in this paper, Q = τQ In where 
τ−1

Q expresses the allowed variability of u from utarget . One can readily introduce a diagonal, but anisotropic Q imply-
ing that certain response components are more less/important than others. Maximizing the corresponding expected gain, 
implies finding z for which the response quantities of interest are, on average, as close (in the norm defined by Q ) to 

2 As it will become apparent in the subsequent derivations, the exponent in Equation (2) is used in order to simplify the presentation and several other 
options to the same effect are possible.
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