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For problems defined in a two-dimensional domain � with boundary conditions specified 
on a curve �, we consider discontinuous Galerkin (DG) schemes with high order 
polynomial basis functions on a geometry fitting triangular mesh. It is well known that 
directly imposing the given boundary conditions on a piecewise segment approximation 
boundary �h will render any finite element method to be at most second order accurate. 
Unless the boundary conditions can be accurately transferred from � to �h , in general 
curvilinear element method should be used to obtain high order accuracy. We discuss a 
simple boundary treatment which can be implemented as a modified DG scheme defined 
on triangles adjacent to �h . Even though integration along the curve is still necessary, 
integrals over any curved element are avoided. If the domain � is convex, or if � is 
nonconvex and the true solutions can be smoothly extended to the exterior of �, the 
modified DG scheme is high order accurate. In these cases, numerical tests on first order 
and second order partial differential equations including hyperbolic systems and the scalar 
wave equation suggest that it is as accurate as the full curvilinear DG scheme.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Consider solving a two-dimensional time dependent problem defined on a curved domain � with boundary conditions 
specified on a curve � ⊆ ∂�. Assuming a geometry fitting triangular mesh is given, we focus on discontinuous Galerkin (DG) 
method with high order polynomial basis functions. For high order schemes defined on such a triangular mesh as illustrated 
in Fig. 1, boundary conditions on �h as an approximation to � must be carefully treated to obtain optimal convergence rate. 
For instance, given homogeneous Dirichlet boundary conditions on �, any finite element method will be at most second 
order accurate with Dirichlet boundary conditions imposed on �h [1,2]. Towards optimal convergence rate, a curved element 
near � can be used [3].

Even though the curvilinear element method via an isoparametric parametric approximation to � [4] is rather convenient 
to use for DG schemes [5–8], the computational and memory costs in curved elements will be increased due to integra-
tion on curved elements, especially when the boundary geometry is represented by very high order polynomials in high 
dimensions. Thus there is a strong motivation in studying more efficient alternatives to the full curvilinear DG methods.

One popular simple treatment to reduce computational cost of DG method on curved elements is to include the Jacobian 
determinant of the map from each curved element to a straight-sided reference element either in solution space or in test 
function space, e.g., [9,10]. Even though it may work well for a lot of problems in practice, such a nonpolynomial approx-
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Fig. 1. An illustration of a geometry fitting triangular mesh on a curved domain. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

imation is not well understood in analysis. A low-storage curvilinear DG method was proposed and analyzed in [11,12], 
where the geometric factors were included in both solution and test function spaces with a provable convergence under a 
mild condition on the mesh. For tensor-product type elements, the mass matrix is lumpable on the curved elements, see [8].

For specific schemes and problems, it is possible to accurately transfer the boundary conditions from � to �h so that 
high order accuracy can be obtained for DG on triangular meshes without curved elements. In [13], a simple approximation 
to curved solid wall boundary conditions for steady gas dynamics equations was discussed. An implicit transfer of boundary 
conditions was presented in [14,15] for the hybridizable DG method solving steady convection diffusion equations and 
the mesh does not need to be strictly geometry fitting in this method. For time dependent gas dynamics equations, an 
explicit transfer through an inverse Lax–Wendroff procedure was discussed for finite difference schemes in [16–19] yet the 
performance of this method applied to DG schemes is unclear.

Recently a simple curved interface treatment for DG scheme on triangles solving acoustic wave equations was presented 
in [20]. In this paper, we will extend the approach in [20] to treating curved boundaries. We derive a modification to the 
DG scheme defined on a boundary triangle. Even though the line integration along the curve � is still necessary, integrals 
over curved elements are avoided. By local truncation error analysis, such a modified DG scheme is high order accurate in 
convex domains. For nonconvex domains, it is also high order accurate if the equation and its smooth exact solution can be 
smoothly extended to the exterior of the domain. When the solution cannot be smoothly extended on nonconvex domains, 
the modified DG scheme is at most second order accurate however produces smaller errors than the DG scheme defined 
on triangles. On the other hand, a simple spectrum analysis suggest that this kind of modified DG scheme is unstable for 
arbitrary misfit between the boundary of a triangular mesh and the true curved boundary. Nonetheless, numerical tests 
suggest that such a scheme is stable on a reasonably coarse triangular mesh and finer ones.

The paper is organized as follows: we first discuss the main idea in Section 2 for first order equations. The same idea can 
be applied to other time dependent problems. As a demonstration, we discuss the second order wave equation in Section 3. 
For hyperbolic conservation laws, the local conservation is an important property. We discuss an additional step to enforce 
the local conservation in Section 4. Numerical tests are shown in Section 5. Section 6 consists of concluding remarks.

2. Time-dependent conservation laws

2.1. Preliminaries

Consider solving the following initial-boundary value problem on a two-dimensional curved domain � with � ⊆ ∂�:⎧⎨
⎩

ut + ∇ · F(u) = 0, x ∈ �,

u(x,0) = u0(x), x ∈ �,

u(x, t) = b(x, t), x ∈ �.

(1)

Suppose a triangular mesh Th of the domain � fitting the boundary ∂� is given. For simplicity, we assume that the 
mesh fits the geometry in a way that � does not intersect any edge in Th at more than two points. We also assume � does 
not pass more than two vertices of any triangle in Th . These two assumptions are not essential for remaining discussion in 
this paper. Then for any boundary triangle K adjacent to the curve �, there are only two possibilities for the intersection 
between � and K . If � intersects K at only two vertices of K , we call it a convex case. Otherwise, � also intersects K at its 
interior, then we call it a concave case. Let ei

K (i = 1, 2, 3) be the three edges of the triangle K and e1
k be the one adjacent 

to the curve �. Let ̃e1
K be an isoparametric approximated representation of �, i.e., a high order polynomial interpolant of 

the curve �. We use K̃ denote the curvilinear element bounded by e2
K , e3

K and ̃e1
K . Let C denote the difference between K

and K̃ . See Fig. 2.
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