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The Bayesian approach to Inverse Problems relies predominantly on Markov Chain Monte 
Carlo methods for posterior inference. The typical nonlinear concentration of posterior 
measure observed in many such Inverse Problems presents severe challenges to existing 
simulation based inference methods. Motivated by these challenges the exploitation of 
local geometric information in the form of covariant gradients, metric tensors, Levi-
Civita connections, and local geodesic flows have been introduced to more effectively 
locally explore the configuration space of the posterior measure. However, obtaining such 
geometric quantities usually requires extensive computational effort and despite their 
effectiveness affects the applicability of these geometrically-based Monte Carlo methods. 
In this paper we explore one way to address this issue by the construction of an 
emulator of the model from which all geometric objects can be obtained in a much 
more computationally feasible manner. The main concept is to approximate the geometric 
quantities using a Gaussian Process emulator which is conditioned on a carefully chosen 
design set of configuration points, which also determines the quality of the emulator. 
To this end we propose the use of statistical experiment design methods to refine a 
potentially arbitrarily initialized design online without destroying the convergence of the 
resulting Markov chain to the desired invariant measure. The practical examples considered 
in this paper provide a demonstration of the significant improvement possible in terms of 
computational loading suggesting this is a promising avenue of further development.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In Bayesian Inverse Problems one needs to draw samples from a typically high dimensional and complicated intractable 
probability measure [1]. Samples are needed to estimate integrals for e.g. point estimates or interval estimates for uncer-
tainty quantification. Random Walk Metropolis (RWM) is hampered with its random walk nature, and Hybrid Monte Carlo 
(HMC) [2–9] with its exploitation of local gradients and approximate Hamiltonian flows in an expanded phase space can 
substantially improve over RWM. Riemannian Manifold Hamiltonian Monte Carlo [5] further takes advantage of local metric 
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tensors to adapt the transition kernel of the Markov chain to the local structure of the probability measure, and indeed 
the proposal mechanism is provided by the local geodesic flows on the manifold of probability measures [5]. This has been 
demonstrated to allow Markov Chain Monte Carlo (MCMC) to effectively explore the types of challenging posterior measures 
observed in many Inverse Problems, see e.g. [10] and the example in Fig. 1 in this paper.

The challenge here is that these geometric objects including gradients, metrics, connection components are typically 
expensive to compute, hindering their application in practice. This is due to the requirement of a single forward solve of the 
model in evaluating the likelihood, and this increases with the choice of metric tensor and associated connections (second 
and third order tensors), see [10] for detailed developments which exploit adjoint solver codes.

In this contribution we investigate the feasibility of emulating these expensive geometric quantities using a Gaussian 
Process model [11]. The remainder of the paper has the following structure. Section 2 briefly reviews Hamiltonian Monte 
Carlo methods, Sections 3 and 4 detail the Gaussian Process emulation of potential energies, gradients, second order metric 
tensors and third order tensor metric connections. Since it is impossible to emulate the expected Fisher metric [5] based 
on the Gaussian Process assumption, we propose to emulate the empirical Fisher information in this work. The accuracy of 
the GP emulator to approximate these geometric quantities depends on the design set, or configurations, which should be 
well spread over the distribution to capture its geometry. Given a well chosen design set that is fixed a priori, the emulated 
MCMC algorithms can scale up with dimensions reasonably well due to emulation of higher oder tensors also being a 
linear prediction problem. However it is unreasonable to assume that such a good design set is available initially or indeed 
generally. Therefore Section 5 introduces regeneration [12–14] as a general adaptation framework and experimental design 
algorithm Mutual Information for Computer Experiments (MICE) [15] to refine the design set. It is a well-known challenging 
problem to obtain good design sets in high dimensions in general. Although the proposed method by exploiting MCMC 
samples may be not ready for applications of thousand dimensions, it is a novel attempt and worth further development. 
We illustrate the advantage of emulation for geometric Monte Carlo algorithms over their full versions with examples in 
Section 6. Finally in Section 7, we summarize the contribution and discuss some future directions of investigation.

2. Review of dynamics and geometry inspired simulation methods

2.1. HMC

Hybrid Monte Carlo (HMC) [2,3] is a Metropolis style algorithm that reduces its random walk behavior by making distant 
proposals guided by Hamiltonian flows. These distant proposals are found by numerically simulating Hamiltonian dynamics, 
whose state space consists of its position vector, θ ∈ R

D , and its momentum vector, p ∈ R
D . In application to statistical 

models, θ consists of the model parameters (and perhaps latent variables), and p are auxiliary variables. The objective is to 
sample from the posterior distribution π(θ |D) ∝ π(θ)L(θ |D), where π(θ) is the prior and L(θ |D) is the likelihood function. 
We define the potential energy as U (θ) := − logπ(θ |D), and the kinetic energy, K (p), similarly as the minus log of the density 
of p, which is usually assumed p ∼ N (0, M). Then the total energy, Hamiltonian function is defined as their sum:

H(θ,p) = U (θ) + K (p) = − logπ(θ |D) + 1

2
pTM−1p (1)

Therefore the joint density of θ and p is π(θ , p) ∝ exp(−H(θ, p)). Note, the covariance matrix M is also referred as the 
constant mass matrix.

Given the current state θ , we sample the momentum p ∼ N (0, M), and evolve the joint state z := (θ, p) according to 
Hamilton’s equations:

θ̇ = ∂ H

∂p
= M−1p

ṗ =−∂ H

∂θ
=−∇θ U (θ) (2)

The resulting Hamiltonian dynamics are 1) time reversible, and 2) volume preserving. In practice, however, it is difficult to 
solve Hamiltonian’s equations analytically, so numerical methods such as, leapfrog (or Störmer–Verlet) [16,17], to approxi-
mate these equations by discretizing time with small step size ε. In the standard HMC algorithm, L, of these leapfrog steps, 
with some step size, ε, are used to propose a new state, which is either accepted or rejected according to the Metropolis 
acceptance probability [One can refer to [3], for more details].

2.2. RHMC

While HMC explores the parameter space more efficiently than Random Walk Metropolis (RWM), it does not fully exploit 
the geometric properties of the parameter space. In some complex scenarios, e.g. the concentrated nonlinear distribution 
in Fig. 1, HMC does not explore the parameter space as ‘straightforwardly’ as RHMC does. To take advantage of the Rie-
mannian geometry of statistical models, Girolami and Calderhead [5] propose Riemannian Manifold HMC (RHMC) to improve 
the efficiency of the standard HMC by automatically adapting to the local structure of the parameter space. Following the 
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