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An overlapping mesh methodology that is spectrally accurate in space and up to 
third-order accurate in time is developed for solution of unsteady incompressible flow 
equations in three-dimensional domains. The ability to decompose a global domain into 
separate, but overlapping, subdomains eases mesh generation procedures and increases 
flexibility of modeling flows with complex geometries. The methodology employs implicit 
spectral element discretization of equations in each subdomain and explicit treatment of 
subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate 
temporal extrapolation, and requires few, if any, iterations, yet maintains the global 
accuracy and stability of the underlying flow solver. The overlapping mesh methodology is 
thoroughly validated using two-dimensional and three-dimensional benchmark problems 
in laminar and turbulent flows. The spatial and temporal convergence is documented 
and is in agreement with the nominal order of accuracy of the solver. The influence 
of long integration times, as well as inflow–outflow global boundary conditions on the 
performance of the overlapping grid solver is assessed. In a turbulent benchmark of 
fully-developed turbulent pipe flow, the turbulent statistics with the overlapping grids is 
validated against published available experimental and other computation data. Scaling 
tests are presented that show near linear strong scaling, even for moderately large 
processor counts.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Finding numerical solutions to partial differential equations (PDEs) by decomposing the computational domain into 
smaller subdomains is an idea that has been around for well over a century. Domain decomposition methods have been uti-
lized for several different purposes, including straightforward parallelization [1–4], simplified mesh generation for complex 
geometries [5–8], and the ability to use different parameters or methods in different subdomains [9–12]. These techniques 
exist in many forms, and each has its strengths. Some decompose the global domain into overlapping subdomains [13–18], 
while others employ non-overlapping subdomains [19,9,7,20–22]. Some use explicit interpolation techniques for values at 
interface boundaries [9,23,20,24], and others carry out implicit interpolation [25,26,22,27,13,14,28–30]. Domain decomposi-
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tion techniques have been developed for use with several numerical methods including finite difference [14,5,9,23], finite 
element [25], finite volume [17,31], and spectral methods [21,22].

The earliest known research in domain decomposition methods was performed by H.A. Schwarz whose work was 
published in 1870 [13]. The original Schwarz Alternating Method, initially proposed for analytical calculations [32], was 
developed for the global solution of boundary value problems for harmonic functions [15] decomposed into overlapping 
subdomains, � = �1 ∪ �2. The solution in the first subdomain (�1 with boundaries ∂�1 ∩ ∂� and �1 = ∂�1 \ ∂�) is found 
using the global boundary conditions on ∂�1 ∩ ∂� and corresponding values from �2 at the previous iteration on �1. The 
solution of �2 is then found by using values from the solution in �1 on �2. These two steps are iterated until sufficient 
convergence is reached (see [33,32,34]).

In the 1960’s, Volkov generalized the original Schwarz Alternating Method into a numerical domain decomposition tech-
nique, in a form of the Composite Mesh Difference Method (CMDM) [14]. CMDM used finite difference methods to solve the 
2-dimensional Poisson equation numerically on overlapping grids. His research laid the foundation for subsequent tech-
niques that extended the use of CMDM to other elliptical and hyperbolic PDEs, and boundary value and initial value 
problems, with the ability to use curvilinear meshes (see [35–38,6]). Overlapping domain decomposition methods have 
also been developed to model complex equations and handle various difficulties in solving practical problems. The Chimera 
Grid Scheme, introduced in [39], employs overset (overlapping) grids for modeling flows in complex geometries. Shortly 
after initial development it was enhanced for use with three dimensional flows modeled by the Euler equations [40] and 
later with the addition of the thin-layer Navier–Stokes equations. More recently, Chimera Grid techniques have been used to 
model a variety of problems with complex geometries [41,42]. Subsequently, Henshaw and Schwendeman [17,4] developed 
a method for using overlapping mesh techniques in modeling high-speed reactive flows, in two and three dimensions.

In addition, techniques that employ non-overlapping grids (sometimes called patched grids) were developed. Examples 
include a zonal approach that uses a flux-vector splitting technique for the determination of interface values in Euler equa-
tions [43–46], Lions method [19] that uses an iterative technique to arrive at the correct values to be passed between 
non-overlapping subdomains in solving Laplace’s equation and more general second-order elliptic problems, Dawson’s ap-
proach [9] that solves the heat equation using an explicit finite difference formula to determine the interface values and 
allows for different time stepping to be used in different subdomains. Non-overlapping grid techniques have also been ex-
tended and employed in solving the advection–diffusion equation [20] and the Navier–Stokes equations [45,22]. Some of 
the more recently developed non-overlapping domain decomposition methods achieve high finite global accuracy [47] and 
some spectral accuracy [21,7,48,22].

While non-overlapping mesh methods allow some flexibility in mesh generation, the constraints in these techniques 
inhibit additional flexibility that is seen in overlapping mesh methods. By allowing variable overlap size, a broad range of 
potential mesh configurations are supported with overlapping methods, thus allowing for more simplified mesh generation. 
Additionally, overlapping methods provide a convenient framework for further extension towards moving domain methods, 
allowing for general and unconstrained motion of rigid body parts through the background stationary meshes [49–52].

So far, existing overlapping grid methods for the time-dependent PDE coupling have been traditionally relying on low-
order, finite-difference or finite-volume schemes. Although some of the methods have been extended to achieve higher-order 
spatial convergence, using extended stencil finite-difference or compact schemes, the upper bound of the global accuracy 
has been usually limited to four [23,24,53], and at most six [54–56,27,57]. Recently, Brazell, Sitaraman and Mavriplis devel-
oped a high-order overlapping Discontinuous Galerkin solver for compressible equations, that uses Lagrangian interpolation 
at interface boundaries, and documented a polynomial convergence up to fourth order [58]. In the current paper, we in-
troduce a spectrally-accurate overlapping mesh method for incompressible equations, that is based on a spectral-element 
method. The Spectral Element Method, which can be perceived as a high-order extension of the Finite Element Method, 
divides a domain into several conforming and adjacent elements [59,3,60]. The volume within each element is discretized 
using Nth-order tensor-product Lagrange interpolating polynomials on Gauss–Lobatto–Legendre nodal points. Approxima-
tions in all elements are coupled at the boundaries to form a global solution [60], which achieves spectral convergence with 
p- (polynomial order) refinement. In this work, we combine a Spectral Element Method solver with the overlapping grid 
approach, to arrive at a globally spectrally-accurate method for solution of the incompressible Navier–Stokes equations on 
overlapping domains.

One of the inherent challenges with overlapping grid methods is to minimize the errors that are introduced due to the 
coupling of the individual subdomain solutions into the global solution. The coupling errors consist of spatial errors and 
temporal errors, and have to be treated separately. Spatial errors are introduced by the spatial interpolation stencil em-
ployed to obtain a function value at the interface points of one domain from the gridpoint values in the adjacent domains 
at the same time level. Some overlapping mesh methods circumvent the spatial error by requiring that the gridpoints in 
overlapping domains exactly coincide [61,62], thus fully conserving communicated information, with the drawback of de-
creased flexibility in mesh generation. Other methods that do not require the exact match of the gridpoints and thus are 
more flexible, use finite order interpolation schemes to determine values from adjacent subdomains. Although simple linear 
interpolation techniques have been popular [6,9,63,29,64], it was shown by Chesshire and Henshaw [6] that an interpo-
lation scheme should be consistent with the accuracy of the underlying solver and higher-order interpolation is required 
to maintain the accuracy of the coupled solution with high-order methods, generally, of the order of one higher than the 
underlying solver accuracy if the overlap width scales with the grid resolution, and the same if it stays constant during 
grid refinement. Thus, in fourth- and sixth-order methods [58,23,27,24], a generalized Lagrangian interpolation method 
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