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Compressive sensing has become a powerful addition to uncertainty quantification in 
recent years. This paper identifies new bases for random variables through linear mappings 
such that the representation of the quantity of interest is more sparse with new 
basis functions associated with the new random variables. This sparsity increases both 
the efficiency and accuracy of the compressive sensing-based uncertainty quantification 
method. Specifically, we consider rotation-based linear mappings which are determined 
iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the 
new method with applications in solving stochastic partial differential equations and high-
dimensional (O(100)) problems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty quantification (UQ) plays an important role in constructing computational models as it helps to understand 
the influence of uncertainties on the quantity of interest. In this paper, we study parametric uncertainty, which treats 
some of the parameters as random variables. Let (�, F , P ) be a complete probability space, where � is the event space 
and P is a probability measure on the σ -field F . We consider a system depending on a d-dimensional random vector 
ξ(ω) = (ξ1(ω), ξ2(ω), · · · , ξd(ω))T , where ω is an event in �. For simplicity, we denote ξi(ω) as ξi . We aim to approximate 
the quantity of interest u(ξ ) with a generalized polynomial chaos (gPC) expansion [1,2]:

u(ξ) =
N∑

n=1

cnψn(ξ) + ε(ξ), (1.1)

where ε is the truncation error, N is a positive integer, cn are coefficients, ψn are multivariate polynomials which are 
orthonormal with respect to the distribution of ξ :∫

Rd

ψi(ξ)ψ j(ξ)ρ(ξ )dξ = δi j, (1.2)
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where ρ(ξ) is the probability distribution function (PDF) of ξ and δi j is the Kronecker delta. The approximation converges 
in the L2 sense as N increases if u is in the Hilbert space associated with the measure of ξ (i.e., the weight of the inner 
product is the PDF of ξ ) [2–4]. Stochastic Galerkin and probabilistic collocation are two popular methods [1,2,5–8] used to 
approximate the gPC coefficients c = (c1, c2, · · · , cN)T . Stochastic collocation starts by generating samples of input ξ q, q =
1, 2, · · · , M based on ρ(ξ ). Next, the computational model is calculated for each ξq to obtain corresponding samples of the 
output uq = u(ξq). Finally, coefficients c are approximated based on uq and ξq . Note that in many practical problems, it 
is very costly to obtain uq and, due to the limited computational sources, we will often have M < N or even M � N . The 
smaller number of samples than basis functions implies that the following linear system is under-determined:

Ψc = u + ε, (1.3)

where u = (u1, u2, · · · , uM)T is the vector of output samples, Ψ is an M × N matrix with 
i j = ψ j(ξ
i) and ε =

(ε1, ε2, · · · , εM)T is a vector of error samples with εq = ε(ξq). The compressive sensing method is effective at solving this 
type of under-determined problem when c is sparse [9–12] and recent studies have applied this approach to uncertainty 
quantification (UQ) problems [13–24].

Several useful approaches have been developed to enhance the efficiency of solving Eq. (1.3) in UQ applications. First, 
re-weighted �1 minimization assigns a weight to each cn and solves a weighted �1 minimization problem to enhance the 
sparsity [25]. The weights can be estimated in a priori [18,26] or, for more general cases, can be obtained iteratively [15,
17]. Second, better sampling strategies can be used, such as minimizing the mutual coherence [27,20]. Third, Bayesian 
compressive sensing method provides the posterior distribution of the coefficients [23,16]. Finally, adaptive basis selection 
selects basis functions to enhance the efficiency instead of fixing the basis functions at the beginning [22]. Recently, we 
propose an approach [17] to enhance the sparsity of c through the rotation of the random vector ξ to a new random vector 
η, where the rotation operator is determined by the sorted variability directions of the quantity of interest u based on the 
active subspace method [28].

In this work, we aim to extend our previous work [17] and consider the specific case where the system depends on 
i.i.d. Gaussian random variables; i.e., ξ ∼ N (0, I ) where 0 is a d-dimensional zero vector and I is a d × d identity matrix. 
This assumption appears in a wide range of physics and engineering problems. We aim to find a mapping g : Rd �→ R

d

which maps ξ to a new set of i.i.d. Gaussian random variables η = (η1, η2, · · · , ηd)
T such that the gPC expansion of u with 

respect to η is sparser. In other words,

u(ξ) ≈
N∑

n=1

cnψn(ξ) =
N∑

n=1

c̃nψ̃n(η(ξ)) ≈ u(η(ξ)), (1.4)

where ψ̃n are orthonormal polynomials associated with the new random vector η and c̃n are the corresponding coefficients. 
Note that ψn = ψ̃n since η ∼N (0, I ). We intend to find the set c̃ = (c̃1, ̃c2, · · · , ̃cN )T which is sparser than c while preserving 
the properties of matrix Ψ̃ (with 
̃i j = ψ̃ j(ηi)) close to those of Ψ to improve the efficiency of the compressive sensing 
method. To accomplish this, we will use a linear mapping, based on the idea of active subspaces [28], to obtain η as first 
proposed in [17]. Unlike our previous work, we build this mapping iteratively in order to obtain a sparser c̃ and improve the 
efficiency of the gPC approximation by compressive sensing. We also provide the analytical form of the “gradient matrix” 
(see Eq. (3.3)) to avoid estimating it with Monte Carlo methods. Our method is applicable for both �0 and �1 minimization 
problems. Especially, for the latter, we can also integrate the present method with re-weighted �1 minimization method to 
further reduce the error. We demonstrate that, compared with the standard compressive sensing methods, our approach 
reduces the relative L2 error of the gPC approximation.

2. Brief review of the compressive sensing-based gPC method

2.1. Hermite polynomial chaos expansions

In this paper we study systems relying on d-dimensional Gaussian random vector ξ ∼ N (0, I ). Therefore, the gPC 
basis functions are constructed by tensor products of univariate orthonormal Hermite polynomials. For a multi-index 
α = (α1, α2, · · · , αd), αi ∈ N ∪ {0}, we set

ψα(ξ) = ψα1(ξ1)ψα2(ξ2) · · ·ψαd (ξd). (2.1)

For two different multi-indices αi = ((αi)1 , (αi)2 , · · · , (αi)d ) and α j = ((α j)1 , (α j)2 , · · · , (α j)d ), we have the property∫
Rd

ψαi (ξ)ψα j (ξ)ρ(ξ )dξ = δαiα j = δ(αi)1 (α j)1
δ(αi)2 (α j)2

· · · δ(αi)d (α j)d
, (2.2)

where

ρ(ξ ) =
(

1√
2π

)d

exp

(
−ξ2

1 + ξ2
2 + · · · + ξ2

d

2

)
. (2.3)

For simplicity, we denote ψαi (ξ) as ψi(ξ).
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