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Fractional partial order diffusion equations are a generalization of classical partial 
differential equations, used to model anomalous diffusion phenomena. When using the 
implicit Euler formula and the shifted Grünwald formula, it has been shown that the 
related discretizations lead to a linear system whose coefficient matrix has a Toeplitz-
like structure. In this paper we focus our attention on the case of variable diffusion 
coefficients. Under appropriate conditions, we show that the sequence of the coefficient 
matrices belongs to the Generalized Locally Toeplitz class and we compute the symbol 
describing its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. 
We employ the spectral information for analyzing known methods of preconditioned 
Krylov and multigrid type, with both positive and negative results and with a look forward 
to the multidimensional setting. We also propose two new tridiagonal structure preserving 
preconditioners to solve the resulting linear system, with Krylov methods such as CGNR 
and GMRES. A number of numerical examples show that our proposal is more effective 
than recently used circulant preconditioners.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fractional-space diffusion equations (FDEs) are used to describe diffusion phenomena, that cannot be modeled by the 
second order diffusion equations. More precisely, when a fractional derivative replaces a second derivative in a diffusion 
model, it leads to enhanced diffusion. The FDEs are of numerical interest, since there exist only few cases in which the 
analytic solution is known. As a consequence, in the past ten years, many methods have been proposed for solving numer-
ically FDEs problems. In [16,17] Meerschaert and Tadjeran introduced an unconditionally stable method for approximating 
the FDEs: from a numerical linear algebra viewpoint, it is worth noticing that the resulting linear systems show a strong 
structure and indeed the related coefficient matrices can be seen as a sum of two diagonal times Toeplitz matrices (see 
[32]). Exploiting such a structure, in [31] the authors employed the conjugate gradient normal residual (CGNR) method and 
numerically showed that its convergence is fast when the diffusion coefficients are small, that is in this case the resulting 
linear system is well-conditioned. On the other hand, when the diffusion coefficients are not small, the problem becomes 
ill-conditioned and the convergence of the CGNR method slows down. To avoid the resulting drawback, in [19] Pang and 
Sun proposed a multigrid method that converges very fast, even in the ill-conditioned case. The linear convergence of such 
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a method has been proved only in the case of constant and equal diffusion coefficients. With the same purpose, Lei and Sun 
used the CGNR method with a circulant preconditioner and verified that it converges superlinearly (see [15]), again in the 
case of constant diffusion coefficients. A further improvement of the circulant preconditioning has been proposed in [18]. 
Both strategies preserve the computational cost per iteration of O (N log N) operations, typical of the CGNR method when 
applied to Toeplitz type structures.

Under appropriate conditions, in this paper we show that the coefficient matrix-sequence coming from the Meerschaert–
Tadjeran method belongs to the Generalized Locally Toeplitz (GLT) class [25,26] and we compute the associated symbol: it 
turns out that the symbol describes the asymptotic singular value distribution, as the matrix size tends to infinity. In other 
words, an evaluation of the symbol over a uniform equispaced gridding in the domain leads to a reasonable approximation 
of the singular values, when the matrix size is sufficiently large. Furthermore, when the diffusion coefficients are equal 
(even if not necessarily constant), we show that the symbol also describes the eigenvalue distribution. Making use of such 
asymptotic spectral information, we study in more detail recently developed techniques, by furnishing new positive and 
negative results: for instance we prove that the circulant preconditioning described in [15] cannot be superlinear in the 
variable coefficient case, due to a lack of clustering at a single point, while the multigrid approach based on the symbol 
(which goes back to [9,2] and it is used in this FDE context in [19]) can be optimal also in the variable coefficient set-
ting. We finally introduce two tridiagonal preconditioners for Krylov methods like CGNR and GMRES, which preserve the 
Toeplitz-like structure of the coefficient matrix. One of the preconditioners involves the first derivative discretization matrix 
and is suitable for fractional exponents close to 1, the other makes use of the discrete Laplacian matrix and is recommended 
for fractional exponents close to 2. Due to their tridiagonal structure, both preconditioners preserve the computational cost 
per iteration of the used Krylov method. A clustering analysis of the preconditioned matrix-sequences, even in case of 
nonconstant diffusion coefficients, is also provided.

The paper is organized as follows. In Section 2 we briefly introduce the FDEs equations and recall the Meerschaert–Tad-
jeran discretization. Section 3 concerns the symbol and the spectral distribution of the resulting coefficient matrix-sequence. 
In Section 4 we study known preconditioning techniques and multigrid methods by using the spectral information and we 
give details on our new preconditioning strategy. Finally, Section 5 is devoted to numerical examples and Section 6 contains 
conclusions and open problems.

2. Fractional diffusion equations and a finite difference approximation

We are interested in the following initial-boundary value problem⎧⎨
⎩

∂u(x,t)
∂t = d+(x, t) ∂αu(x,t)

∂+xα + d−(x, t) ∂αu(x,t)
∂−xα + f (x, t), (x, t) ∈ (L, R) × (0, T ],

u(L, t) = u(R, t) = 0, t ∈ [0, T ],
u(x,0) = u0(x), x ∈ [L, R],

(1)

where α ∈ (1, 2) is the fractional derivative order, f (x, t) is the source term and the nonnegative functions d±(x, t) are the 
diffusion coefficients. The right-handed (−) and the left-handed (+) fractional derivatives in (1) are defined in Riemann–
Liouville form as follows
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where n is an integer such that n −1 < α ≤ n and �(·) is the gamma function. If α = m, with m ∈N, the fractional derivatives 
reduce to the standard integer derivatives, i.e.,

∂mu(x, t)
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= ∂mu(x, t)

∂xm
,

∂mu(x, t)

∂−xm
= (−1)m ∂mu(x, t)

∂xm
.

Let us observe that when α = 2 the equation in (1) reduces to a parabolic partial differential equation (PDE), while when 
α = 1 it becomes a hyperbolic PDE. From a numerical point of view, an interesting definition of the fractional derivatives is 
the shifted Grünwald definition given by
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