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In this article, we propose a post-processing of the planewave solution of the Kohn–Sham 
LDA model with pseudopotentials. This post-processing is based upon the fact that the 
exact solution can be interpreted as a perturbation of the approximate solution, allowing us 
to compute corrections for both the eigenfunctions and the eigenvalues of the problem in 
order to increase the accuracy. Indeed, this post-processing only requires the computation 
of the residual of the solution on a finer grid so that the additional computational cost is 
negligible compared to the initial cost of the planewave-based method needed to compute 
the approximate solution. Theoretical estimates certify an increased convergence rate in the 
asymptotic convergence range. Numerical results confirm the low computational cost of the 
post-processing and show that this procedure improves the energy accuracy of the solution 
even in the pre-asymptotic regime which comprises the target accuracy of practitioners.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

First-principle molecular simulation is nowadays a major tool in different fields such as chemistry, condensed matter 
physics and materials science. Its use is motivated by the fact that it enables one to understand and predict the properties 
of a molecular system, without any empirical parameter except a few fundamental constants of physics (the reduced Planck 
constant h̄, the Boltzmann constant kB , the mass of the electron me , the elementary charge e, the dielectric permittivity of 
the vacuum ε0) and the masses and atomic numbers of the nuclei contained in the system under investigation.

At this level, matter is described as a system of interacting nuclei and electrons. Within the Born–Oppenheimer approx-
imation [1] (made in almost all molecular simulations), nuclei are considered as classical point-like particles and electrons 
are assumed to be, at each time t , in their ground state. As a consequence, the nuclei dynamics is governed by a classical 
Hamiltonian
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H
({Rk}1≤k≤M , {Pk}1≤k≤M

)= M∑
k=1

|Pk|2
2mk

+ W (R1,R2, · · · ,RM),

where mk , Rk ∈ R
3 and Pk ∈ R

3 are respectively the mass, the position and the momentum of the kth nucleus, where M
is the total number of nuclei and where W is an effective potential taking into account the presence of the electrons. The 
bottleneck in first-principle molecular simulation is the evaluation of the potential W for a given nuclear configuration 
which requires computing the ground state energy of the electrons in the electrostatic potential generated by the nuclei. 
This quantity can, in principle, be computed by solving the electronic Schrödinger equation. However, as this equation is 
a (linear) 3N -dimensional partial differential equation, where N is the number of electrons in the system, this cannot 
be done by brute force numerical methods when N exceeds two or three due to the curse of dimensionality. Different 
approaches have been proposed to compute the electronic ground state energy. The most popular of them can be classified 
into three groups:

o wavefunction methods, among which are the Hartree–Fock and multiconfiguration self-consistent-field (MCSCF) models 
(see [4] for a mathematical introduction);

o methods originating from the density functional theory (DFT), namely orbital-free and Kohn–Sham models, that are 
used and presented in detail hereafter;

o quantum Monte Carlo methods [12,13].

The Kohn–Sham models [7,11] are the most popular approach to date as they offer a good compromise between accuracy 
and computational cost; they are among the most widely used models in physics and chemistry [2].

The purpose of this article is to present a new post-processing method for periodic Kohn–Sham calculations in planewave 
bases, leading to a significant gain in accuracy at a very limited extra computational cost. This method is based on the 
observation that the exact Kohn–Sham ground state can be considered as a perturbation of the approximate Kohn–Sham 
ground state computed in a finite basis set, and in applying first and second-order perturbation theory to the eigenvectors 
and eigenvalues of the Kohn–Sham operator respectively, in order to improve their accuracies. The specific structure of 
the problem and the a priori error estimates in [3] allow us to identify the leading terms in these first and second-order 
contributions, which turn out to be easy to evaluate, and discard the other terms, which are very costly or impossible to 
evaluate, but negligible since proven to be small.

Our approach strongly relies on the fact that the kinetic energy operator which, from a mathematical point of view, is 
the leading term in the Kohn–Sham Hamiltonian commutes with the orthogonal projection on the discretization space. This 
is not the case for atomic orbital basis sets methods, but this is the case for other discretizations such as some wavelet 
methods. The extension of our approach to approximation settings that do not satisfy this commutation property requires 
additional theoretical investigations and is work in progress.

This article is organized as follows. We first recall in Section 2.1 the mathematical formulation of the Kohn–Sham mod-
els for isolated molecular systems. We then present the supercell Kohn–Sham model used in condensed phase modeling 
and simulation (Section 2.2), and the concept of pseudopotential (Section 2.3). The planewave discretization method for 
the supercell Kohn–Sham model with pseudopotential is discussed in Section 3.1 and the iterative algorithms used to 
solve the resulting Kohn–Sham equations are detailed in Section 3.2. The a priori error estimates our analysis is based 
upon are reviewed in Section 3.3. We then introduce the post-processing in Section 4. For pedagogical reasons, we derive 
the expressions of the post-processed eigenfunctions and eigenvalues under the assumptions that all the eigenvalues of 
the Kohn–Sham operator are non-degenerate. The general case, as well as the proof of Theorem 4.1, which quantifies the 
improvement of the Kohn–Sham ground state energy obtained by the post-processing in the asymptotic regime, will be 
detailed in a mathematical analysis oriented paper [5]. In Section 5, we report numerical simulations on a simple system, 
an alanine molecule, obtained with the KSSOLV package [19], showing that our post-processing method leads to significant 
gain in accuracy (typically one order of magnitude on the energy) for a small extra cost (a few percent of the overall cost). 
Numerical simulations with the CO2 and the benzene molecules were also performed and led to very similar results, and 
therefore are not presented in this paper.

2. DFT Kohn–Sham models

2.1. Introduction to Kohn–Sham models

Throughout this article, we adopt the system of atomic units for which h̄ = 1, me = 1, e = 1, 4πε0 = 1. In this system of 
units, the charge of the electron is −1 and the charges of the nuclei are positive integers.

Let us first consider an isolated molecular system in vacuo, consisting of M nuclei of charges (z1, · · · , zM) ∈ (N \ {0})M

located at the positions (R1, · · · , RM) ∈ (R3)M of the physical space, and of N electrons. The electrostatic potential generated 
by the nuclei and felt by the electrons is then given by

V nuc(r) = −
M∑

k=1

zk

|r − Rk| . (1)
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