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We present a loosely coupled approach for the solution of fluid–structure interaction 
problems between a compressible flow and a deformable structure. The method is based 
on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is 
accounted for by a conservative cut-cell Immersed Boundary method. The present approach 
enables sub-cell resolution by considering individual cut-elements within a single fluid 
cell, which guarantees an accurate representation of the time-varying solid interface. The 
cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special 
treatment. A Mortar method is chosen in order to obtain a conservative and consistent load 
transfer. We validate our method by investigating two-dimensional test cases comprising a 
shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of 
a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we 
propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin 
shell interacting with a shock wave involving large and complex structural deformations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Compressible fluid–structure interaction (FSI) occurs in a broad range of technical applications involving, e.g., nonlinear 
aeroelasticity [16,42] and shock-induced deformations of rocket nozzles [23,55]. The numerical modeling and simulation of 
compressible FSI can be challenging, in particular if an accurate representation of the structural interface within the fluid 
solver and a consistent coupling of both subdomains is required.

FSI algorithms are generally classified as monolithic or partitioned. One main advantage often attributed to monolithic 
approaches is their numerical robustness due to solving a single system which includes the full information of the coupled 
nonlinear FSI problem. On the other hand, partitioned algorithms for FSI are often used because they facilitate the cou-
pling of different specialized single-field solvers. A further distinction can be made between loosely and strongly coupled 
algorithms, depending on whether the coupling conditions are satisfied exactly at each time step, or not. While partitioned 
algorithms can be made strong by introducing equilibrium iterations [34], loosely coupled approaches are more frequently 
used in the field of aeroelasticity and compressible flows in general [6,16]. A disadvantage of loosely coupled partitioned 
algorithms is the artificial added mass effect [5,21], which may lead to numerical instability in incompressible flows and for 
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high fluid–solid density ratios. Recently, so-called Added-Mass Partitioned algorithms have been developed for compressible 
fluids interacting with rigid and elastic solids [1,3] as well as for incompressible fluids [2]. These methods allow to overcome 
the added mass instability by formulating appropriate fluid–structure interface conditions.

FSI problems involve a load and motion transfer at the conjoined interface. In the simple case of matching fluid and solid 
discretization, this results in a trivial task. However, different resolution requirements within the fluid and solid fields lead to 
non-matching discrete interfaces. An overview of existing coupling methods for non-matching meshes can be found in [9]. 
Simple methods such as nearest-neighbor interpolation and projection methods are frequently used [17,31]. The mentioned 
methods do not conserve angular momentum across the interface. Consistency can be achieved with more sophisticated 
approaches, such as weighted residual methods, which introduce Lagrange multipliers as additional interface variables. In 
this context, Mortar methods have first been proposed for non-overlapping domain decomposition in [4], enhanced with 
dual shape functions for the Lagrange multipliers in [53] and applied to FSI problems and mesh tying in fluid flow, e.g. 
in [13,33]. While Mortar methods introduce Lagrange multipliers only on one side of the interface, Localized Lagrange 
Multipliers consider them on both sides of the interface [47].

Another classification of FSI methods is based on the representation of the time-varying solid interface within the fluid 
domain. Two main approaches can be distinguished in this context, which are Arbitrary Lagrangian Eulerian (ALE) methods 
[10,18], and Immersed Boundary Methods (IBM) [38,41]. ALE approaches employ body-fitted grids, hence requiring a mesh 
evolution algorithm. This task may be complex in case of large solid displacements. On the other hand, IBM often operate on 
fixed Cartesian fluid grids, making this type of approach very appealing for the simulation of flows past complex geometries 
and for the solution of FSI problems with large deformations. IBM, such as continuous forcing and ghost-cell approaches, 
may suffer from spurious loss or production of mass, momentum and energy at the interface [38]. Such non-conservativity 
poses a particular problem for large-eddy simulations, which employ coarse grids and rely on an accurate flow prediction 
in near-wall regions over large time scales. Moreover, the accurate capturing of shocks is based on conservation properties. 
Conservativity is recovered with Cartesian cut-cell methods, which were first introduced by Clarke et al. [7] and Gaffney 
and Hassan [22] for inviscid flows and later extended to viscous flows by Udaykumar et al. [52] and Ye et al. [54]. In this 
method, the finite volume cells at the boundaries are reshaped to fit locally the boundary surface with a sharp interface, 
which in turn assures strict conservation of mass, momentum and energy. A drawback of cut-cell methods is that the 
fluid volume fraction of cut-cells may become very small and therefore can lead to numerical instability with explicit time 
integration schemes. A stabilization of the underlying time integration scheme can be achieved by so-called cell-merging 
[54], cell-linking [32] or flux redistribution techniques [8,30].

In this paper we develop a loosely coupled approach for the solution of FSI problems between a compressible fluid 
and a deformable structure. We employ the Finite Volume Method (FVM) for solving the Euler equations on Cartesian 
grids and the Finite Element Method (FEM) for solving the structural problem. The interface motion is accounted for by a 
conservative cut-cell IBM. Previous proposed methods reconstruct the interface geometry based on a level-set function [26,
27,36]. Örley et al. [40] developed a conservative cut-element method that allows for representing the fluid–solid interface 
with sub-cell resolution for rigid body motion. We extend this method to arbitrary interface deformations. The combination 
of a cut-element IBM with a Mortar method for coupling of the solid and fluid subdomains in a consistent and efficient way 
is the essential new contribution of this paper.

This paper is structured as follows: First, the governing equations for fluid and solid and the fluid–structure interface 
conditions are introduced in Section 2. Section 3 gives a detailed overview on the numerical treatment of moving boundaries 
together with the discretization methods used for the fluid. The FEM used to solve the structural problem is presented 
in Section 4. In Section 5, the staggered coupling algorithm is presented together with the new coupling approach for 
non-matching interfaces. In Section 6, the method is validated with well-established two-dimensional test cases and a 
convergence study is presented. In Section 7, we propose a new test case for the interaction between a flexible inflated thin 
shell and a shock wave, demonstrating in particular the capability of our FSI approach to handle large three-dimensional 
deformations. Concluding remarks are given in Section 8.

2. Mathematical and physical model

As depicted in Fig. 1, the computational domain is divided into a fluid and solid domain, �F and �S , respectively. The 
conjoined interface is denoted as � = �F ∩ �S and its normal vector n� in spatial configuration points from the solid into 
the fluid domain.

2.1. Governing equations for the fluid

We consider the three-dimensional, fully compressible Euler equations in conservative form

∂ w

∂t
+ ∇ · K (w) = 0 in �F . (1)

The state vector w = [ρF, ρFu1, ρFu2, ρFu3, E t] contains the conserved variables density ρF , momentum ρFu and total en-
ergy E t . The subscript F denotes fluid quantities and is used whenever a distinction between both subdomains is necessary. 
The individual contributions of the flux tensor K = ( f , g, h) are given as
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