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1. Introduction

Channel flow is a simple configuration that has been widely studied numerically in order to analyze turbulent boundary
layers and validate models [1,2]. For fully developed channel flows, periodic conditions are considered in the infinite span-
wise direction, and also along the streamwise direction. A homogeneous source term S; is then added to the momentum
equations to compensate for viscous forces and drive the flow at a given bulk velocity. In direct numerical simulations, the
momentum equation in the streamwise direction (i = 1) reads
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where Sq is the homogeneous source term in the streamwise direction while S; = S3 = 0. The source term S; enforces the
flow mass flow rate and then determines the obtained Reynolds number. In standard flows with constant flow properties
and without multiple physical phenomena (chemistry, radiation, ...), non-dimensional equations can be written and this
source term is directly related to the intended bulk or friction Reynolds number. Alternatively, the source term can be
simply updated step by step to compensate for the change of the intended mass flux [3]. However, in more complex flows
featuring variable properties due to an explicit dependency on temperature for example [4], or involving multiphysics such
as chemistry [5] or radiation [6,7], equations are kept in their dimensional form and S; must be determined differently to
reach a target bulk Reynolds number Relg.
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A first method to determine S; consists in taking a fixed constant in time S™f [5,6] that is either chosen arbitrarily or
more carefully evaluated from friction coefficient formulae that depend on the Reynolds number. Usually, the considered
formulae are accurate for simple flows (constant properties, no multiphysics) but can become considerably erroneous as the
studied flow is more and more complex. In such a case, the final Reynolds number that is obtained is different from the
intended one.

A second kind of method consists in dynamically adapting the source term value after each iteration so that the Reynolds
number is brought towards its target value [8,4,5,9]. However, none of these methods have been carefully characterized with
a dedicated study. The procedures reported in [4,9] are similar to
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where S'{“ is the updated value of the uniform momentum source term at iteration n + 1, pg is the target value of bulk
density and ”E is the target value of bulk velocity. Equation (2) describes the adaptation of S'l'+1 because of the difference
between the bulk mass flux at iteration n and its target value ,og u,t). This difference is related to the difference between the
simulation bulk Reynolds number and the target value Reg. The relaxation time "¢ used in Eq. (2) is typically expressed
in terms of the channel time scale §/u;. When using Eq. (2), the permanent regime is reached after a transient stage and
SQ’H tends towards a constant value denoted by S7, and
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Since the obtained stationary value S is different from the empirically determined S™f in complex flows, a finite bias
between Re, and Re,tj unfortunately remains in such flows. This bias is not present in the formulation from Lenormand et al.
[8] which can be reformulated as a PI controller with constant coefficients and a time response close to the computation
time step. The efficiency of the approach was established a posteriori.

Equation (2) was thus a first attempt to control the bulk Reynolds number. This objective is here pursued by proposing
an approach which ensures that the channel flow converges exactly and efficiently to the target bulk Reynolds number
a priori and a posteriori. The approach appears as a modified PI controller with time varying coefficients. Carefully tuning the
time varying coefficients allows to derive a second order ordinary differential equation with constant coefficients for Rey,
whose time response can then be exactly controlled. The method is described in the following section. Its efficiency is then
demonstrated in several channel flow configurations. Similarly, the method is derived and applied for the equivalent control
of bulk temperature when studying turbulent heat transfer. Finally, a strategy for the control of both bulk Reynolds number
and bulk temperature with variable thermo-physical properties accounted for is derived and validated in the section 4.
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2. Control of the bulk Reynolds number
2.1. Formulation

Integration of Eq. (1) over the whole computational domain V gives

d
pr /pu1dV’ =/t1jnde+S1V (4)
v

where nj is the outward surface normal vector. The integration of the pressure gradient and the convective terms is null
because of the applied periodic boundary conditions in the X and Z directions.

The integrated term on the left side of Eq. (4) is related to the bulk Reynolds number Re, = "’JTLL’J‘S,
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where § is the half-width of the channel and the subscript b is related to the aforementioned bulk quantities.
The integrated wall shear stress is split into two contributions,
/lenjdsz_(fw,l + Tw,2)Sw (6)

as Ty,1 and Ty 2, the average wall shear stresses on the lower and upper wall respectively, can be different in the general
case. Sy, denotes the surface area of each wall.
Neglecting variations of the bulk dynamic viscosity and noticing that V = 28S,,, Eq. (4) becomes
dRe Tw1+T 1)
b __ w,1 w,2 + 25, (7)
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