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We consider the numerical solution of the wave equation in a two-dimensional domain 
and start from a boundary integral formulation for its discretization. We employ the 
convolution quadrature (CQ) for the temporal and a Galerkin boundary element method 
(BEM) for the spatial discretization. Our main focus is the sparse approximation of 
the arising sequence of boundary integral operators by panel clustering. This requires 
the definition of an appropriate admissibility condition such that the arising kernel 
functions can be efficiently approximated on admissible blocks. The resulting method has 
a complexity of O

(
N (N + M)q4+s

)
, s ∈ {0,1}, where N is the number of time points, 

M denotes the dimension of the boundary element space, and q =O (log(N M)) is the order 
of the panel-clustering expansion. Numerical experiments will illustrate the efficiency and 
accuracy of the proposed CQ-BEM method with panel clustering.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The efficient and reliable simulation of scattered waves in unbounded exterior domains is a numerical challenge and the 
development of fast numerical methods is far from being matured. We are here interested in a boundary integral formulation 
of the problem to avoid the use of an artificial boundary with approximate transmission conditions [27,2,11,18,8] but allow
to recast the problem (under certain assumptions which will be detailed later) as an integral equation on the surface of the 
scatterer. As our model problem we consider the homogeneous wave equation

∂2
t u = �u in � × (0, T ) ,

u(·,0) = ∂t u(·,0) = 0 in �,

u = g on � × (0, T ) , (1)

where � ⊂ R
2 is either a bounded domain or the exterior of a bounded domain and � := ∂�. The methods for solving 

this problem can be split into a) frequency domain methods where an incident plane wave at prescribed frequency excites a 
scattered field and a time periodic ansatz reduces the problem to a purely spatial Helmholtz equation and b) time-domain
methods where the excitation is allowed to have a broad temporal band width and, possibly, an a-periodic behavior with 
respect to time.
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In our paper we will focus on time-domain methods for the wave equation which is particularly important to model 
electric or acoustic systems shortly after they are “switched on”, i.e., before the system has reached a time-harmonic steady 
state.

The formulation of (1) as a space–time integral equation by the retarded acoustic single layer potential can be written in 
the form

t∫
0

∫
�

k (‖x − y‖ , t − τ )ϕ (y, τ )d�ydτ = g (x, t) ∀(x, t) ∈ � × (0, T ), (2)

where k is the fundamental solution for the acoustic wave equation.
Among the most popular methods for discretizing this equation are: a) the convolution quadrature (CQ) method [33,34,

24,32,6,13] and b) the direct space–time Galerkin discretization of (2) (see, e.g., [5,19,20,40,41,45]).
The goal of this paper is to present fast solution methods for solving the wave equation in two spatial dimensions via 

(2) and to base the discretization on the CQ-method. The kernel function is given by applying the inverse Laplace transform 
L−1 to the transfer function K :

k (r,•) := L−1 (K (r,•)) = 1

2π i

∫
Iσ

ez• K (r, z)dz with K (r, z) := 1

2π
K0 (rz)

along a vertical contour

Iσ = σ + iR for some σ > 0, (3)

and K0 being the modified Bessel function (see, e.g., [1, Sec. 9.6]). For this problem, we will introduce the panel-clustering 
method for the sparse representation of the discrete CQ-BEM operators. For problems in three spatial dimensional domains 
� ⊂ R

3 and � being a two-dimensional Lipschitz manifold, a fast version of the convolution quadrature with BDF2 for the 
temporal discretization has been developed in [25,29,7]. Although there is a reduction with respect to memory and CPU 
time compared to the conventional approach the arising method is not of optimal complexity O (N M) (modulo additional 
factors depending only logarithmically on N and M), where N denotes the number of time steps and M is the dimension 
of the boundary element space. In this paper, we consider the panel-clustering method for the CQ-BEM with BDF1 in two 
spatial dimensions and prove the log-linear scaling with respect to the total number of unknowns for both, CPU time and 
memory requirement.

It is well known that the fundamental solution of a second order partial differential equation (PDE) in even (spatial) 
dimensions is more complicated than in odd dimensions and new techniques for its approximation have to be developed. The 
speedup and memory savings of the resulting method is substantial and more significant than for the methods described 
in [25,29]: more precisely, the storage and computational complexity is O

(
N (N + M)q4+s

)
with q = O (log (N M)) and 

s ∈ {0,1} instead of O
(
N M2

)
for the classical CQ-BEM method. If we assume M ∼ N , we obtain an optimal complexity (up 

to logarithmic terms) with respect to the total number of freedoms. We note in passing that boundary integral equations 
can be used to define transparent transmission conditions at artificial boundaries for wave propagation problems; the above 
mentioned CQ-BEM method has been proposed in [12] for an efficient discretization of such conditions. The new method 
we propose here also allows for a sparse realization of such exact non-local transmission conditions, where the complexity 
grows log-linearly with respect to the total number of unknowns Ntot := N M .

Our new panel-clustering method for the two-dimensional wave equation requires the generalization and combination 
of quite different discretization techniques such as convolution quadrature, boundary element method, and panel clustering 
for complicated kernel functions. We recall the definitions of the basic algorithms in order to keep the presentation self 
contained and to estimate the complexity of the different steps of the algorithm. The paper is organized as follows.

In Section 2, we formulate the convolution quadrature method for the two-dimensional wave equation and introduce the 
boundary element method for its spatial discretization.

In Section 3, the panel-clustering method based on an abstract admissibility condition is introduced, while Section 4 is 
devoted to its implementation. This algorithmic formulation of the method will also play an essential role for the complexity 
estimates of the method.

The error analysis is carried out in Section 5. We employ functional-type estimates for certain derivatives of modified 
Bessel and exponential functions, recently presented by the authors in [15], to derive a non-standard admissibility condition 
for the panel-clustering approximation of the arising kernel functions. The local approximation error will be estimated and 
used for the stability and consistency analysis.

In Section 6, we will prove that the storage and computational complexity of the resulting CQ-BEM method with panel 
clustering is O

(
N (N + M)q4+s

)
, where q =O (log (N M)) and s ∈ {0,1}.

We will present the results of numerical experiments in Section 7 which demonstrate that the theoretical complexity 
and error estimates are sharp for the considered model problems.
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