
Journal of Computational Physics 305 (2016) 244–262

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Higher-order wavelet reconstruction/differentiation filters and 

Gibbs phenomena

Richard Lombardini 1, Ramiro Acevedo 2, Alexander Kuczala 3, Kerry P. Keys 4, 
Carl P. Goodrich 5, Bruce R. Johnson ∗

Department of Chemistry, Smalley-Curl Institute and Laboratory for NanoPhotonics, Rice University, Houston, TX 77005, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 December 2014
Received in revised form 18 October 2015
Accepted 23 October 2015
Available online 30 October 2015

Keywords:
Wavelets
Projection
Reconstruction
Gibbs
Multidimensional
Boundary

An orthogonal wavelet basis is characterized by its approximation order, which relates to 
the ability of the basis to represent general smooth functions on a given scale. It is known, 
though perhaps not widely known, that there are ways of exceeding the approximation 
order, i.e., achieving higher-order error in the discretized wavelet transform and its inverse. 
The focus here is on the development of a practical formulation to accomplish this 
first for 1D smooth functions, then for 1D functions with discontinuities and then for 
multidimensional (here 2D) functions with discontinuities. It is shown how to transcend 
both the wavelet approximation order and the 2D Gibbs phenomenon in representing 
electromagnetic fields at discontinuous dielectric interfaces that do not simply follow the 
wavelet-basis grid.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Wavelets are of general interest in developing systematically-improvable multiscale methods for solving differential equa-
tions in quantum mechanics, electromagnetism and many other applications. Orthogonal wavelet families such as those due 
to Daubechies [1] allow multiresolution description and compression of the solutions as well as fast forward and inverse 
wavelet transforms. These are efficient transformations between discretized real space functions and wavelet basis space 
coefficients. The forward (projection) transform is well controlled and may be carried out to a desired accuracy by using 
high-order numerical quadrature and, if needed, scale refinement procedures [2–4]. In contrast, the inverse (reconstruction) 
transform is usually described as being intrinsically limited by the approximation order of the wavelet family, which is a 
measure of its ability to approximate general smooth functions. Despite that common sentiment, Keinert and Kwon [5] and 
Neelov and Goedecker [6] demonstrated that one can beat this limit in reconstruction. Our group has recently generalized 
the latter results so that the reconstruction error can be tuned just as freely as the projection error [7]. There are particu-
lar consequences of this, as will be shown. For example, the increased tunability gives us the ability to use shorter-length 
wavelets while maintaining higher-order accuracy. More difficult generalizations are then pursued, e.g., maintaining high-
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order accuracy at function discontinuities, which requires overcoming the wavelet Gibbs phenomenon. This is then carried 
over to the 2D Gibbs phenomenon with an electromagnetic example possessing a dielectric interface that is curved rather 
than aligned with the wavelet basis grid. The strategy adopted is developed with an eye toward wavelet solution of differ-
ential equations in multiple dimensions with arbitrarily-shaped interfaces without being intrinsically restricted to low-order 
accuracy. The present work bears on how well such solutions can be represented in wavelet bases in the first place.

The first focus is on 1D function expansions in father wavelets or scaling functions, φ(x − k), k an integer, and on 
inversion of a matrix X formed from projections of monomial powers (x − τ )p onto this distributed basis. The parameter τ
is a shift that may be varied so as to allow wavelet interpolation/extrapolation in reconstruction. The columns of X−1 can 
be applied to a series of neighboring coefficients to provide high-order real-space samples of the underlying function and 
its derivatives. The lengths of these local convolution filters and their error orders can be varied by varying the size of the 
original matrix. By translation invariance, the same filters can be applied to different groups of expansion coefficients of the 
same length. Furthermore, explicit formulae can be derived for the filters in terms of Lagrange interpolating polynomials 
and moments of φ(x).

A fundamentally different situation occurs when there are boundary conditions, e.g., potential energy discontinuities in 
quantum mechanics, dielectric function discontinuities in Maxwell’s equations and so on. Wavelet basis functions generally 
have overlapping supports and are not particularly graceful in satisfying pointwise boundary conditions. For functions with 
discontinuities, one encounters the wavelet Gibbs phenomenon, where reconstructions using the regular basis functions 
show significant errors in the neighborhood of the discontinuity [8,9]. One potential remedy is to try to work only with 
basis functions, or parts of them, that fall on one side of the boundary at a time. Those few φ(x −k) with support straddling 
the boundary become truncated and lose their mutual orthogonality. It is known that linear combinations of them may be 
orthogonalized to produce special edge functions terminating at the boundary [10–12], but these “intervalized” bases are 
not fully compatible with high order reconstruction as pursued here.

Instead, the nonorthogonal tail functions are used directly. Their truncated moments may be calculated and used in a 
generalized version of the distributed-moment matrix X, followed by its inversion to produce edge-adapted reconstruction 
filters. There are some caveats: (i) a number of different filters are required near the boundary, (ii) the inversion of the 
matrix is only done numerically and, consequently, (iii) greater care must be taken to avoid effects due to finite precision. 
Nevertheless, this straightforward extension successfully allows reconstruction and differentiation filters near the edge that 
exhibit the desired higher-order errors and avoid the undesired Gibbs phenomenon.

New challenges arise for complex boundaries in multiple dimensions, and a different strategy is needed. In the finite-
difference time-domain (FDTD) method in computational electromagnetics [13,14], one approach is to employ staircasing, 
i.e., replacing the actual boundary with a nearby boundary following grid faces (for discussion see, e.g., Zhao and Wei 
[15]), though this is not ideal. In a 2D problem with a curved boundary, we define similar staircased contours on either 
side that approach but do not cross the actual boundary. These mark the edges of the support to either side and allow 
exact moments to be calculated for use in projection and reconstruction. The reconstruction takes place at the boundary 
by appropriate shifts in the 2D moments, equivalent to mild polynomial extrapolation. (A related but different polynomial 
extrapolation of wavelet series has been used to handle edge effects in finite wavelet bases before [16].) As the scale is 
reduced, the average distances between the actual and staircased contours decreases and high-order reduction in error is 
achieved. There is some non-uniformity in the convergence of pointwise errors, but this is not fatal. In this way, 2D Gibbs 
oscillations are avoided, and confidence is gained that extension to arbitrary boundaries and higher dimensions will be 
effective.

The paper is organized as follows. In Section 2 the basics are discussed for wavelet projection and reconstruction via 
convolutional filters depending on moments. In Section 3 the generalization to include boundaries in 1D is made, and the 
further generalizations to include boundaries in 2D are made in Section 4. A brief summary of conclusions is given in 
Section 5, followed by appendices.

2. Wavelet projection and reconstruction filters

2.1. Wavelet transforms

Orthogonal compact-support Daubechies-type wavelet families [1,17] are characterized by φ(x) and the mother wavelet 
(or wavelet function) ψ(x). These are limited in support to the interval 0 ≤ x ≤ L − 1, where L is an even integer. Each may 
be expressed as a finite sum of squeezed and translated copies of the scaling function,

φ(x) =
L−1∑
k=0

ckφ(2x − k), ψ(x) =
L−1∑
k=0

dkφ(2x − k), (1)

where ck and dk are known two-scale coefficients that are different for each wavelet family. More generally, it is useful to 
define orthonormal functions formed via scaling by λ and translating in units of λ,

φλ
k (x) = λ−1/2φ(x/λ − k), ψλ

k (x) = λ−1/2ψ(x/λ − k). (2)

A general function may then be expanded as
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