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A general solution strategy of the modified power iteration method for calculating higher 
eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. 
The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 
2) weight cancellation for higher modes, 3) population control with higher mode weights, 
and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. 
The numerical tests of neutron transport eigenvalue problems successfully demonstrate 
that the new strategy can significantly accelerate the fission source convergence with 
stable convergence behavior while obtaining multiple higher eigenmodes at the same 
time. The advantages of the new strategy can be summarized as 1) the replacement of 
the cumbersome solution step of high order polynomial equations required by Booth’s 
original method with the simple matrix eigen decomposition, 2) faster fission source 
convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, 
and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the 
lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle 
accumulations. The application of the modified power method to continuous energy Monte 
Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time 
in this paper.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The power iteration method is widely used in nuclear criticality calculations, both with deterministic methods and 
Monte Carlo methods, to get the dominant eigenvalue and the corresponding eigenfunction. Interest in obtaining the higher 
mode eigenvalues and eigenfunctions is increasing, especially for reactor transient analysis, stability analysis, assessments 
of nuclear safety, as well as for the acceleration of source convergence. This can be done in various ways for deterministic 
calculations, and its efficiency can be very high. However, special attention needs to be paid to the Monte Carlo implemen-
tations.

The power iteration method is typically adopted in Monte Carlo criticality transport simulations. It is well known that 
after n iterations, the ratio of a higher mode to the fundamental mode will be (|ki |/k0)

n , where ki is the ith mode eigen-
value, and the final results will be the fundamental mode after a sufficient number of iterations. That’s the typical idea of 
criticality calculations with the Monte Carlo method.

* Corresponding author.
E-mail address: deokjung@unist.ac.kr (D. Lee).

http://dx.doi.org/10.1016/j.jcp.2015.10.042
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.10.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:deokjung@unist.ac.kr
http://dx.doi.org/10.1016/j.jcp.2015.10.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.10.042&domain=pdf


388 P. Zhang et al. / Journal of Computational Physics 305 (2016) 387–402

In the last few years, Booth proposed a modified power iteration method for simultaneously obtaining the first two 
eigenvalues and eigenfunctions, and it can accelerate the convergence of the fundamental mode (0th mode) [1–8]. This 
method directly subtracts out the 1st eigenmode and thus only powers out the second and higher eigenmodes. Booth and 
Gubernatis demonstrated the performance of the method using a one-dimensional one-group Monte Carlo neutron transport 
eigenvalue problem [6]. Shi and Petrovic implemented this method for one-dimensional two-group problems and proved its 
validity for these problems [9]. Yamamoto also studied the convergence of the 1st eigenmode in Monte Carlo power iteration 
using a one-dimensional two-group problem [10].

The modified power method can be generalized further to obtain the 2nd and even higher eigenmodes, but neither 
any practical solution nor any calculation application has been reported yet. Based on the newly formulated matrix form 
of the fission source transfer probabilities, a generalized solution strategy for simultaneously obtaining the first several 
higher eigenmodes is proposed in this work. It is demonstrated by the finite difference method (FDM) first, and then it is 
successfully implemented in the continuous energy Monte Carlo code.

There are some difficulties with the Monte Carlo implementation of the modified power method. One difficulty is that 
both positive and negative weights should be maintained and some weight cancellation scheme should be applied to esti-
mate higher eigenmodes. Another difficulty is that for some cases the Monte Carlo implementation of the modified power 
iteration method may collapse due to some instability problems. The instability problem was reported by Booth and Guber-
natis [6] and also mentioned in Yamamoto’s paper [10]. It is caused by the statistical uncertainties inherent in Monte Carlo 
simulation. The accumulated tally technique is proposed in this work to overcome this problem.

2. Methodology

2.1. Review of modified power method

The modified power iteration method starts with two arbitrary functions, ψ0 and ψ1, both of which can be expressed as 
linear combinations of eigenfunctions:

ψ0(r) =
∑

i

aiφi(r), ψ1(r) =
∑

i

biφi(r), (1)

where φi(r) is the ith mode eigenfunction.
Updated solutions are calculated as a linear combination of ψ0(r) and ψ1(r) with parameter x:

ψ(r) = ψ0(r) + xψ1(r) =
∑

i

aiφi(r) + x
∑

i

biφi(r) =
∑

i

(ai + xbi)φi(r). (2)

Suppose that after n power iterations, the higher eigenmodes powered out, leaving only the first two eigenmodes:

Anψ(r) =
∑

i

(ai + xbi)Anφi(r) =
∑

i

(ai + xbi)k
n
i φi(r)

≈ kn
0(a0 + xb0)φ0(r) + kn

1(a1 + xb1)φ1(r), (3)

where A is the power iteration operator.
If x = −a1/b1, ψ(r) will converge to the 0th eigenmode; while if x = −a0/b0, ψ(r) will converge to the 1st eigenmode. 

The corresponding eigenvalue will be:

λ =
∫

ψndr∫
ψn−1dr

=
∫

Aψn−1dr∫
ψn−1dr

, (4)

which will converge to either the 0th or 1st eigenvalues, k0 or k1, depending on x.
Due to the characteristics of eigensystems, the integration in Equation (4) in any sub-region of the system must produce 

the same eigenvalue. If one chooses two sub-regions, R1 and R2, then Equation (4) can be written as:

λ = k =
∫

R1 ψndr∫
R1 ψn−1dr

=
∫

R2 ψndr∫
R2 ψn−1dr

, (5)

and if V ij and W ij are defined as follows:∫
R j

ψidr = V ij,

∫
R j

Aψidr = W ij, (6)

then Equation (5) can be written as:

λ = W01 + xW11

V 01 + xV 11
= W02 + xW12

V 02 + xV 12
, (7)
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