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In this article we consider regularizations of the Dirac delta distribution with applications 
to prototypical elliptic and hyperbolic partial differential equations (PDEs). We study the 
convergence of a sequence of distributions SH to a singular term S as a parameter H
(associated with the support size of SH ) shrinks to zero. We characterize this convergence 
in both the weak-∗ topology of distributions and a weighted Sobolev norm. These 
notions motivate a framework for constructing regularizations of the delta distribution 
that includes a large class of existing methods in the literature. This framework allows 
different regularizations to be compared. The convergence of solutions of PDEs with 
these regularized source terms is then studied in various topologies such as pointwise 
convergence on a deleted neighborhood and weighted Sobolev norms. We also examine 
the lack of symmetry in tensor product regularizations and effects of dissipative error in 
hyperbolic problems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many phenomena in the physical sciences are modeled by partial differential equations (PDE) with singular source terms. 
The solutions of such PDE models are often studied using numerical approximations. In some computational approaches, 
the singular source terms are represented exactly, such as in [1,7,8,35]. A more common approach is to approximate the 
source term using some regularized function, and then obtain the numerical solution using a discretization of the PDE 
with the approximate source. One prominent example of the utility of singular sources in applications is the immersed 
boundary method [28], wherein a Dirac delta distribution supported on an immersed fiber or surface is used to capture 
the two-way interaction between a dynamically evolving elastic membrane and the incompressible fluid in which it is 
immersed. In immersed boundary simulations, the Dirac delta is replaced by a continuous approximation that is designed 
to satisfy a number of constraints that guarantee certain desirable properties of the analytical and numerical solution. 
Related approximations are also employed in connection with the level set method [27] and vortex methods [3,10].

Suppose we represent the original problem of interest in an abstract form as follows:

Problem 1: Find u such that

L(u) = S, (1a)

where L is a PDE operator and S is a distribution which is used to model a singular source.
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Then let SH denote some approximation of S and consider the associated problem

Problem 2: Find uH such that

L(uH ) = SH . (1b)

Here, H > 0 is some small parameter for which SH → S in some sense as H → 0 (a sense that will be made concrete later 
on). One may then apply an appropriate numerical scheme (e.g., finite difference, finite volume, finite element, spectral, 
etc.) with a discretization parameter h > 0, thereby obtaining two discrete solution approximations: uh to u in Problem 1; 
and uH,h to uH in Problem 2. We are free, of course, to pick one numerical scheme for Problem 1 and a different scheme for 
Problem 2. If the numerical schemes are suitably well-chosen, then both uh → u and uH,h → uH as h → 0.

In practical computations, it may not be possible to construct uh . Indeed, it is typically only uH,h that is computed, by 
first prescribing some approximation to the source term and then discretizing the PDE with the approximate source. Ideally, 
what we hope to obtain is that as both h, H → 0, the discrete approximant uH,h ≈ u. In the immersed boundary method, for 
example, the source term S is a line source and both the approximation of the source term and the discretization of the PDE 
are performed with reference to the same underlying spatial grid, so that parameters H and h are identical. Convergence of 
uH,h → u in the context of the immersed boundary method has been the subject of detailed analysis in the works of Liu 
and Mori [23,24,26]. However, these authors only focus on convergence of the discrete regularizations and do not consider 
uH → u.

In this article we are concerned primarily with two questions:

Question 1. How do we construct ‘good’ approximations SH to S?

Question 2. How does the choice of approximation SH affect the convergence of uH,h → u?

Before we can formulate answers to the above, we have to first answer the two related questions:

Question 3. What form of convergence should be used to examine SH → S?

Question 4. What form of convergence should be used to examine uH,h → u?

In this paper, we restrict our attention to the particular case of S = δ which denotes the well-known point source 
distribution (or Dirac delta distribution) having support at the origin.

Questions 1 and 2 are fairly well-studied in some contexts [16,23,24,6,32,31,30,36] but Questions 3 and 4 have not been 
the subject of much scrutiny in the literature. A common approach for approximating SH (via regularization) is to con-
struct a discrete regularization that is tailored to specific quadrature methods. Waldén [34] presents an analysis of discrete 
approximations of the delta distribution, restricting his attention to applications to PDEs in one dimension. Tornberg and 
Engquist [32] analyze discrete approximations to the delta distribution in multiple dimensions with compact support and 
draw a connection between the discrete moment conditions and the order of convergence of the solution of a PDE with the 
discrete SH as source term. They also consider approximations of line sources using a singular source term or a collection of 
delta distributions in a chain. The analyses of Tornberg [30] and Tornberg and Engquist [31] for the discrete approximations 
SH rely on the choice of mesh and quadrature rules. They also restrict H = O(h) and compare uH,h directly to u so that, 
SH is based on the numerical method used to compute uH,h . More recently, Suarez et al. [29] considered regularizations of 
the delta distribution that are tailored to spectral collocation methods for the solution of hyperbolic conservation laws. Their 
approach to constructing polynomial regularizations using the Chebyshev basis has a similar flavor to our approach, as will 
be seen in Section 3. In a different approach, Benvenuti et al. [5] study the case of regularizations that are not compactly 
supported but have rapidly decaying Fourier transforms in the context of extended finite element methods (XFEM) [4]. The 
authors demonstrate that such regularizations lead to lower numerical errors since they can be integrated using common 
quadrature methods such as Gauss quadrature.

In this article we demonstrate firstly how to develop regularizations SH independent of the choice of numerical dis-
cretization. For example, in answering Question 1 we derive piecewise smooth approximations SH . We can then examine the 
intermediate errors ‖u − uH‖X and ‖uH − uH,h‖X and use the triangle inequality to give a bound on

‖u − uH,h‖X ≤ ‖u − uH‖X︸ ︷︷ ︸
regularization error

+ ‖uH − uH,h‖X︸ ︷︷ ︸
discretization error

, (2)

where ‖ · ‖X refers to a suitably chosen norm; the choice of norms is discussed below. For fixed H > 0 the discretization 
errors ‖uH,h − uH‖X are analyzed using properties of the numerical scheme and regularity of solutions of Problem 2. The 
resulting discretization errors are well-understood for specific problems and specific schemes, and so we focus our attention 
here on the regularization errors.

We propose a unified approach for construction and analysis of regularizations. This has three advantages: First, we are 
able to provide a simple strategy for constructing new regularizations suitable for a given application (and not constrained 
to a specific numerical method for that application). Second, our framework is flexible and allows us to study the effect of 
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