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A new framework for applying anisotropic angular adaptivity in spectral wave modelling is 
presented. The angular dimension of the action balance equation is discretised with the use 
of Haar wavelets, hierarchical piecewise-constant basis functions with compact support, 
and an adaptive methodology for anisotropically adjusting the resolution of the angular 
mesh is proposed. This work allows a reduction of computational effort in spectral wave 
modelling, through a reduction in the degrees of freedom required for a given accuracy, 
with an automated procedure and minimal cost.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A wide range of different numerical models are now available which can be used for the study of wave generation and 
propagation. These can be split into two main categories: phase-resolving and phase-averaging [1]. Phase-resolving models, 
such as potential flow, mild-slope, Boussinesq and full 3D Navier–Stokes models represent the sea surface elevation in space 
and time and accurately account for the non-linear processes. They are, however, computationally expensive and, thus, 
restricted to relatively small scale applications. Phase-averaging models are based on a spectral description of the waves 
and though the non-linearities are represented by parametrised formulations, they are cheap enough to be used on larger 
problem domains.

Spectral wave modelling first appeared after the introduction of the wave energy spectrum by Pierson [2] and the 
introduction of the energy balance equation by Gelci [3]. Based on linear wave theory, the sea surface elevation is composed 
of a superposition of harmonic wave components and the energy spectrum E(x, y, f , θ, t) represents the energy content over 
frequencies f and directions θ , in space (x, y) and time t . All of the important characteristics of the sea surface, such as the 
significant wave height or the mean period, can then be seen as statistical parameters of the spectrum and derived from 
various combinations of its moments mn = ∫ ∫

f n E( f , θ)df dθ [4].
The energy spectrum is calculated based on the conservation of energy in an Eulerian framework. A kinematic part 

representing the propagation of wave energy is balanced with a set of source terms which represent wind generation, 
non-linear energy transfers and wave dissipation. Various spectral wave models have been developed from as early as the 
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1960s. So-called “first-generation models” did not account (or loosely accounted) for non-linear wave energy interactions. 
“Second-generation” models used a simplified parametrised form for these interactions, restricting the shape of the spec-
trum. A thorough review of these early models can be found in [5].

The next milestone in spectral wave modelling came from the WAMDI group [6] with the introduction of WAM, a 
model with improved formulations for the source terms and no a-priori restriction on the shape of the spectrum. This 
framework was coined as “third-generation” wave modelling and followed by rapid developments. Currents were included 
in the formulation by rewriting the governing equation in terms of the action density A = E/ f , which is conserved in 
a relative frame of reference moving with the current [7]. The action balance equation was then extended to account for 
shallow water propagation, such as shoaling and refraction and shallow water non-linear processes, such as triads and depth 
induced breaking. For a thorough review of the most notable developments the reader can refer to [8] and [9]. Today the 
most widely used third generation models by the community are WAM [6] and WAVEWATCHIII [10] for global scales and 
SWAN [11] for coastal applications.

The source parameterisations and the numerical schemes for spectral wave models are still an active field of research. 
The last five years, for example, has seen the error levels for the prediction of significant wave heights and mean periods in 
the middle of the ocean drop by 20% and 30% respectively [12]. A further reduction in these errors necessitates an increase 
in computational resolution, to resolve coastal processes while still covering large domains [13]. An important step towards 
this direction has been the use of unstructured meshes for the spatial discretisation [14–17].

In the ocean circulation modelling community, the wide range of spatial and temporal scales has motivated the devel-
opment of spatially adaptive schemes, as a means of local and anisotropic dynamical mesh refinement. Various techniques 
have been developed, with examples including the structured tree-based hierarchical finite volume Gerris [18] model and 
the unstructured finite element Fluidity [19] model. The first effort to apply these techniques to the energy balance equa-
tion was made by Popinet et al. [20] who combined the adaptive solver of Gerris with WAVEWATCHIII to develop a spatially 
adaptive spectral wave model. In their work they showed a decrease of one to two orders of magnitude in run-times for 
practical spatial resolutions. More recently Meixner [21] was the first to apply adaptivity in phase space. By developing a 
discontinuous finite element spectral wave model, p-adaptivity was applied both in geographic and spectral space. Adjusting 
the order of the finite element expansions gave significant speed-ups compared to using uniform higher order expansions, 
in a deep water propagation test case.

This work focuses on applying adaptivity for the refinement of the angular resolution. It is not easy to quantify the di-
rectional distribution of ocean waves in a general framework. Observations, however, show that the directional distribution 
tends to be sharp around the peak frequency [22,23]. As waves propagate outside of their generation area, direction-
dispersion further enhances this. Thus, in many cases the energy spectrum only contains energy in a narrow band of 
directions. (This is even more obvious in coastal areas where waves appear to come from a single direction.) Viewed in this 
perspective, uniform angular resolutions in spectral wave models are inefficient since for a specific point not all angles have 
non-zero energy. The adaptive approach proposed here attempts to deal with this problem though the use of compactly 
supported wavelet basis functions. These can locally resolve details in the angular dimension resulting in a different angular 
mesh for each computational point.

Wavelets, became an active field of research in the 1980s, with the works of researchers such as Morlet, Grossman 
and Daubechies [24] on signal processing. Starting as an alternative to Fourier analysis, their popularity soon expanded, 
owing mainly to the localised nature of wavelet basis in frequency and time, as well as their hierarchical structure. This 
meant that a localised wavelet transform could be performed with a variable-resolution reconstruction of a signal, which 
is ideal for applications such as data and image compression [25–27]. These advantages soon drew the attention of the 
numerical modelling community, as the aforementioned properties provided an efficient framework for adaptive algorithms. 
Since then, wavelets have been applied to various fields of numerical analysis, including turbulence modelling [28] and 
partial differential equations such as the Navier–Stokes [29,30], hyperbolic [31,32] and parabolic systems [33,34]. A more 
comprehensive list of wavelets used in PDE’s can be found in [35].

Of more relevance to this work, is the use of wavelets for the discretisation of the Boltzmann transport equation, which 
provides a natural framework for spectral wave modelling. Both the Boltzmann transport (in non-scattering media) and 
the energy balance equations are multi-dimensional hyperbolic systems, dealing with the propagation of an energy flux 
in geographic and phase space [36]. It is worth noting that the energy balance equation is also known as the radiative 
transfer equation. In the case where only four-wave interactions are considered for the source terms it is also known as 
the Boltzmann equation [37, p. 30]. Buchan et al. [38] first applied linear and quadratic wavelets for resolving the angular 
dependence of the Boltzmann transport equation, and then went on to show how they can be used for the application 
of angular adaptivity [39]. Goffin et al. [40] then extended this to apply goal-based measures to the error metrics driving 
adaptivity.

In this paper Haar wavelets (named after Alfred Haar) – piecewise constant, hierarchical, compactly supported basis 
functions – are used for the angular discretisation of the action balance equation and the application of anisotropic angular 
adaptivity. Haar wavelets are chosen for their simplicity, as well as the fact that they produce sparse system matrices 
compared to higher order wavelet expansions. For a historical background and an overview of wavelets in general and Haar 
wavelets in particular the reader can refer to [41], while a more rigorous mathematical background and review of their 
numerical applications can be found in [42].
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