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We present a method for solving the reaction–diffusion equation with general potential in 
free space. It is based on the approximation of the Feynman–Kac formula by a sequence 
of convolutions on sequentially diminishing grids. For computation of the convolutions we 
propose a fast algorithm based on the low-rank approximation of the Hankel matrices. The 
algorithm has complexity of O(nrM log M +nr2 M) flops and requires O(Mr) floating-point 
numbers in memory, where n is the dimension of the integral, r � n, and M is the mesh 
size in one dimension. The presented technique can be generalized to the higher-order 
diffusion processes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Path integrals [1–3] play a dominant role in description of a wide range of problems in physics and mathematics. 
They are a universal and powerful tool for condensed matter and high-energy physics, theory of stochastic processes and 
parabolic differential equations, financial mathematics, quantum chemistry and many others. Different theoretical and nu-
merical approaches have been developed for their computation, such as the perturbation theory [4], the stationary phase 
approximation [5,6], the functional renormalization group [7,8], various Monte Carlo [9] and sparse grids methods [10,11]. 
The interested reader can find particular details in the original reviews and books [12–14].

In this paper we focus on the one-dimensional reaction–diffusion equation with initial distribution f (x) : R →R
+ and a 

constant diffusion coefficient σ

⎧⎨
⎩

∂

∂t
u(x, t) = σ

∂2

∂x2
u(x, t) − V (x, t)u(x, t),

u(x,0) = f (x)
t ∈ [0, T ], x ∈R. (1)

This equation may be treated in terms of a Brownian particle motion [15–17], where the solution u(x, t) : R × [0, T ] → R
+

is the density distribution of the particles. The potential (or the dissipation rate) V (x, t) is bounded from below. We do not 
consider the drift term ρ ∂

∂x u(x, t) because it can be easily excluded by a substitution u(x, t) → ũ(x, t)e−ρx [18].
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The solution of (1) can be expressed by the Feynman–Kac formula [18–20]

u(x, T ) =
∫

C{x,0;T }
f (ξ(T ))e− ∫ T

0 V (ξ(τ ),T −τ )dτDξ , (2)

where the integration is done over the set C{x,0; T } of all continuous paths ξ(T ) : [0, T ] → R from the Banach space 
�([0, T ], R) starting at ξ(0) = x and stopping at arbitrary endpoints at time T . Dξ is the Wiener measure, and ξ(t) is the 
Wiener process [21,22]. One of the advantages of the formulation (2) is that it can be directly applied for the unbounded 
domain without any additional (artificial) boundary conditions.

Path integral (2) corresponding to the Wiener process is typically approximated by a finite multidimensional integral with 
the Gaussian measure (details are given in Section 2.1). The main drawback is that this integral is a high-dimensional one 
and its computation requires a special treatment. Several approaches have been developed to compute the multidimensional 
integrals efficiently. The sparse grid method [23,24] has been applied to the computation of path integrals in [25], but only 
for dimensions up to ∼ 100, which is not enough in some applications. The main disadvantage of the Monte Carlo simulation 
is that it does not allow to achieve a high accuracy [26,27] for some cases (highly oscillatory functions, functions of sum of 
all arguments).

The multidimensional integrand can be represented numerically as a multidimensional array (a tensor), which contains 
values of a multivariate function on a fine uniform grid. For the last decades several approaches have been developed to 
efficiently work with tensors. They are based on the idea of separation of variables [28–31] firstly introduced in [32,33]. It 
allows to present a tensor in the low-rank or low-parametric format [34–36], where the number of parameters used for 
the approximation is almost linear (with respect to dimensionality). To construct such decompositions numerically the very 
efficient algorithms have been developed recently: two-dimensional incomplete cross approximation1 for the skeleton decom-
position, three-dimensional cross approximation [37] for the Tucker format [38–41] in 3D, tt-cross [42] approximation for 
the tensor train decomposition [43,44], which can be also considered as a particular case of the hierarchical Tucker format 
[45–47] for higher dimensional case. For certain classes of functions commonly used in the computational physics (mul-
tiparticle Schrödinger operator [48–53], functions of a discrete elliptic operator [54–59], Yukawa, Helmholtz and Newton 
potentials [60–63], etc.) there exist low-parametric representations in separated formats and explicit algorithms [64,65] to 
obtain and effectively work with them (especially quantized tensor train (QTT) format [66–73]). In many cases it is very effec-
tive to compute the multidimensional integrals [74] using separated representations [75], particularly for multidimensional 
convolutions [76–79] and highly oscillatory functions [80].

Our approach presented here is based on the low-rank approximation of matrices used in an essentially different manner. 
We formulate the Feynman–Kac formula as an iterative sequence of convolutions defined on grids of diminishing sizes. This 
is done in Section 3.2. To reduce the complexity of this computation, in Section 3.3 we find a low-rank basis set by applying 
the cross approximation (see Appendix A) to a matrix constructed from the values of a one-dimensional function on a very 
large grid. That gives reduction of computational time and memory requirements, resulting in fast and efficient algorithm 
presented in Section 3.4. The numerical examples are considered in Section 4. The most interesting part is that we are able 
to treat non-periodic potentials without any artificial boundary conditions (Section 4.3).

2. Problem statement

2.1. Time discretization

Equation (2) corresponds to the Wiener process. A standard way to discretize the path integral is to break the time range 
[0, T ] into n intervals by points

τk = k · δt, 0 ≤ k ≤ n, n : τn = T .

The average path of a Brownian particle ξ(τk) after k steps is defined as

ξ (k) = ξ(τk) = x + ξ1 + ξ2 + . . . + ξk,

where every random step ξi , 1 ≤ i ≤ k, is independently taken from a normal distribution N (0, 2σδt) with zero mean and 
variance equal to 2σδt . By definition, ξ (0) = x.

Application of a suitable quadrature rule on the uniform grid (i.e., trapezoidal or Simpson rules) with the weights {wi}n
i=0

to the time integration in (2) gives

	(T ) =
T∫

0

V (ξ(τ ), T − τ )dτ ≈
n∑

i=0

wi V (n)
i δt, V (n)

i ≡ V (ξ(τi), τn−i), (3)

1 Because the low-rank representation of large matrices based on the adaptive cross approximation is directly related to the manuscript we summarize 
the basics of the method in Appendix A.
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