

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Effective surface and boundary conditions for heterogeneous surfaces with mixed boundary conditions

Jianwei Guo^a, Stéphanie Veran-Tissoires^{a,b,*}, Michel Quintard^{a,c}

^a Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), 31400 Toulouse, France

^b Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States

^c CNRS, IMFT, 31400 Toulouse, France

A R T I C L E I N F O

Article history: Received 21 January 2015 Received in revised form 19 August 2015 Accepted 28 October 2015 Available online 10 November 2015

Keywords: Heterogeneous surface Multi-domain decomposition Closure problems Effective surface Effective boundary conditions

ABSTRACT

To deal with multi-scale problems involving transport from a heterogeneous and rough surface characterized by a mixed boundary condition, an effective surface theory is developed, which replaces the original surface by a homogeneous and smooth surface with specific boundary conditions. A typical example corresponds to a laminar flow over a soluble salt medium which contains insoluble material. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework, velocity and concentration at micro-scale are estimated with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the related boundary conditions. The evolution of some effective properties and the impact of surface geometry, Péclet, Schmidt and Damköhler numbers are investigated. Finally, comparisons are made between the numerical results obtained with the effective models and those from direct numerical simulations with the original rough surface, for two kinds of configurations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Transport phenomena taking place over heterogeneous and rough surfaces can be found in a wide range of processes, such as dissolution, drying or ablation to cite a few. The surface characteristic length-scale (linked to the heterogeneities) is generally much smaller than the scale of the global mechanism. In these circumstances, direct numerical simulations (DNSs) become difficult to achieve in practical applications. Indeed, DNSs are only possible when the two length-scales have more or less the same order of magnitude. To overcome this difficulty, a traditional way of solving such problems is to incorporate the micro-scale behaviors into a boundary condition over a smooth, "homogenized" or effective surface.

In [1–3], domain decomposition and multi-scale asymptotic analysis were first introduced to develop an effective surface and the associated boundary conditions for the flow over a rough solid–liquid surface. Later, the effective surface concept was used to describe ablation processes in aerospace [30] and nuclear safety [15] contexts. Different from these works which employed asymptotic method, Wood et al. [33] obtained a spatially smoothed jump condition for the originally non-uniform surface with volume averaging technique. For sake of simplicity, most of the previous studies ignored the geometry changes

* Corresponding author. E-mail address: stephanie.veran@u-bordeaux.fr (S. Veran-Tissoires).

http://dx.doi.org/10.1016/j.jcp.2015.10.050 0021-9991/© 2015 Elsevier Inc. All rights reserved.

Nomenclature

Roman symbols

Α	closure variable for the velocity (dimension- less)
а	closure variable for the concentration (dimen- sionless)
$A_{\beta\gamma}$	surface area of the soluble material in Ω_i m ²
$A_{\beta\sigma}$	surface area of the insoluble material in
R	Ω_i m^2
b	closure variable for the concentration m
b _r	roughness width m
С	concentration of the dissolved species defined
	in Ω kg m ⁻³
C _{eq}	thermodynamic equilibrium concentration of
C.	concentration of the dissolved species defined
C ₁	in Ω_i
<i>c</i> _i	concentration deviation of the dissolved
	species in Ω_i kg m ⁻³
<i>c</i> ₀	concentration of the dissolved species defined
D	in Ω_0 kg m ⁻³
D	diffusion coefficient of the dissolved $m^2 c^{-1}$
Da	Damköhler number (dimensionless)
Da^{v}_{aff}	effective Damköhler number at Σ_{rff}^{ν} (dimen-
en	sionless)
Da	mean Damköhler number over surface $\boldsymbol{\Sigma}$ (di-
	mensionless)
e ₁	unit normal vector linked to x (dimensionless)
e ₂ h.	roughness height m
k k	reaction rate coefficient at Σ
k_{γ}	reaction rate coefficient at $\Sigma_{\beta\gamma}$ m s ⁻¹
k_{σ}	reaction rate coefficient at $\Sigma_{\beta\sigma}$ m s ⁻¹
$k_{\rm eff}^0$	effective reaction rate coefficient at
	$y = 0$ $m s^{-1}$
$k_{\rm eff}^c$	effective reaction rate coefficient at
	Σ_{eff}^{c} ms ⁻¹
$k_{\rm eff}^{\rm v}$	effective reaction rate coefficient at
1.W	$\Sigma_{\text{eff}}^{\nu}$
R _{eff}	effective reaction rate coefficient at $m e^{-1}$
ĥν	$y \equiv w$ IIIs
ĸ	Sufface average reaction rate coefficient at Σ^{ν} m s ⁻¹
1	micro-scale characteristic length
li	width of Ω_i m
L	macro-scale characteristic length m
m	closure variable for the pressure $Pa s m^{-1}$
n _{ls}	unit normal vector on Σ pointing towards the solid (dimensionless)
	sona (amensioness)

n _{0,<i>i</i>}	unit normal vector on $\Sigma_{0,i}$ pointing towards the wall (dimensionless)
р	pressure defined in Ω Pa
p_0	pressure defined in Ω_0 Pa
Di	pressure defined in Ω_i Pa
Pe	micro-scale Péclet number (dimensionless)
<i>p</i> ;	pressure deviation defined in Ω_i Pa
Re	micro-scale Revnolds number (dimensionless)
Rei	macro-scale Revnolds number (dimensionless)
S	closure variable for the pressure
Sc	micro-scale Schmidt number (dimensionless)
u	fluid velocity defined in Ω
U;	fluid velocity defined in Ω_i
ũ,	fluid velocity deviation in Ω_i
u ₀	fluid velocity defined in Ω_0
U	magnitude of macro-scale velocity $m s^{-1}$
w ^c	distance between Σ_0 and Σ^c
w^{ν}	distance between Σ_0 and Σ_{eff}^{ν}
x	abscissa m
v	ordinate m
y	
Greek syn	ibols
β	subscript referring to the fluid phase
δ	effective surface position m
δ_c	position of effective surface under thermody-
	namic equilibrium (dimensionless)
δ_{v}	position of effective surface with no-slip con-
	dition (dimensionless)
γ	subscript referring to soluble phase
σ	subscript referring to insoluble phase
μ	fluid dynamic viscosity Pas
Ω	global domain
Ω_0	subdomain associated with length scale L
Ω_i	pseudo-periodic unit cell
ρ	fluid density kg m ⁻³
$ ho_{\gamma}$	density of soluble medium kg m ⁻³
$ ho_{\sigma}$	density of insoluble material kg m ⁻³
Σ	rough solid–liquid interface
$\Sigma_{eta\gamma}$	interface between β and γ phases
$\Sigma_{eta\sigma}$	interface between β and σ phases
Σ_0	fictitious surface separating Ω_0 and Ω_i
$\Sigma_{0,i}$	restriction of Σ_0 in Ω_i
Σ_e	upper surface of Ω
$\Sigma_{\rm eff}^c$	effective surface under thermodynamic equi-
	librium
$\Sigma_{\rm eff}^{\nu}$	effective surface with no-slip boundary condi-
-	tion
Σ_l	lateral surface of Ω
$\Sigma_{l,i}$	periodic surface lateral surface of Ω_i

Download English Version:

https://daneshyari.com/en/article/6930952

Download Persian Version:

https://daneshyari.com/article/6930952

Daneshyari.com