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We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure 
interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear 
solids that undergo large rotations and displacements. The computational approach is a 
mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) 
to treat large changes in the geometry in an accurate, flexible, and robust manner. 
The current work extends the AMP algorithm developed in Banks et al. [1] for linearly 
elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the 
new AMP algorithm embeds an approximate solution of a nonlinear fluid–solid Riemann 
(FSR) problem into the interface treatment. The solution to the FSR problem is derived 
and shown to be of a similar form to that derived for linear solids: the state on the 
interface being fundamentally an impedance-weighted average of the fluid and solid states. 
Numerical simulations demonstrate that the AMP algorithm is stable even for light solids 
when added-mass effects are large. The accuracy and stability of the AMP scheme is 
verified by comparison to an exact solution using the method of analytical solutions and to 
a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The 
scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped 
solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean 
solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large 
deformations is demonstrated for a problem of a high-speed flow past a light, thin, and 
flexible solid beam.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fluid–structure interaction (FSI) problems are important in many fields of engineering and applied science. These prob-
lems are often difficult to simulate in an efficient, stable and accurate manner. One important issue that arises in many FSI 
simulations is the treatment of large changes in geometry such as those arising when solid bodies or structures undergo 
large rotations and deformations. To address this challenge we use a mixed Eulerian–Lagrangian approach together with 
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deforming composite grids (DCG) that can flexibly and efficiently treat these large changes in geometry while retaining high 
quality grids [1]. A second important issue concerns the stability of the overall FSI algorithm and the numerical treatment 
of the interface between the fluid and solid domains. This is especially important for the case of partitioned solvers, which, 
unlike monolithic algorithms, make use of separate solvers for the fluid and solid domains. To address this issue we have 
developed a variety of added-mass partitioned (AMP) algorithms that embed analytically derived interface conditions into 
the numerical approximation at the interface as a means to obtain accurate and stable partitioned algorithms, even for light
solids when added-mass effects are large. The form of the derived interface conditions depends on the regime of the FSI 
problem. For the case of inviscid compressible fluids coupled to rigid solids [2], for example, the derived AMP interface con-
ditions incorporate added-mass tensors into the rigid-body equations that stabilize the AMP scheme when the mass of the 
body is small, or even zero. For cases involving deformable solids, on the other hand, the derived AMP interface conditions 
take the form of mixed (Robin) type conditions involving the velocity and stress; the coefficients in the mixed interface 
conditions account for the added mass effects. This approach was first used in [1,3] for the case of inviscid compressible 
fluids coupled to linearly elastic solids, and later extended to FSI regimes involving incompressible fluids coupled to either 
compressible elastic bulk solids [4] or elastic structural shells [5,6]. A principal aim of the present paper is to extend the 
analysis in [1] and develop an AMP algorithm for inviscid compressible fluids coupled to nonlinear hyperelastic solids. This 
new AMP algorithm is applicable to a large class of FSI problems, such as those involving large solid deformations and 
rotations.

We consider a mixed Eulerian–Lagrangian formulation of the FSI problem. The equations governing the fluid are formu-
lated in physical (Eulerian) space with evolving boundaries, and are given by the equations of gas dynamics with an ideal 
equation of state. For the solid, we formulate the governing equations in a static reference (Lagrangian) space, and write 
these equations as a first-order system for the components of displacement, velocity and nominal stress. A constitutive law 
relating the stress tensor to the deformation gradient tensor completes the system of equations for the solid. We consider 
the class of hyperelastic solids which implies a nonlinear constitutive law in general. The mathematical formulation of the 
FSI problem is closed by specifying initial conditions, by imposing matching conditions for velocity and stress on the de-
forming fluid–solid interface, and by assigning suitable boundary conditions on the remaining portions of the fluid and solid 
domains.

The equations governing the fluid and solid are both systems of nonlinear hyperbolic partial differential equations (as-
suming certain conditions on the deformation in the solid depending on the choice of constitutive law). The equations are 
solved numerically on DCGs. For the fluid, we use a general arbitrary Lagrangian–Eulerian (ALE) formulation of the equations 
on moving grids, and solve the equations using a second-order extension of Godunov’s method with an approximate Roe 
Riemann solver. This Godunov scheme is described in [7] for static boundaries, and extended in [8] for moving boundaries. 
The numerical treatment of the equations in the fluid domain are well described elsewhere and we provide only a very 
brief description in this paper for completeness. For the solid, the equations are mapped to a static computational space 
and solved on overlapping grids using a new second-order accurate, characteristics-based upwind method, which extends 
the approach in [9] to nonlinear elasticity. The characteristics of the system of equations for the solid with nonzero wave 
speed correspond to pressure and shear waves. There are also characteristics with zero wave speed corresponding to the 
tangential components of stress and the components of displacement. The upwind scheme for the solid adds no dissipation 
to the characteristic variables associated with these zero wave speeds, and this can lead to numerical instabilities for cer-
tain problems. To suppress these instabilities, we add small high-order dissipation terms to the components of the solution 
corresponding to the zero wave speeds.

There are two other (related) issues that arise when solving the first-order system for the evolution of the solid. The first 
issue concerns the compatibility between the stress and strain. For the first-order system, we evolve the time derivative of 
the stress–strain relation, P̄ = P̄( F̄ ), where P̄ and F̄ denote the nominal stress and deformation gradient tensors, respec-
tively, and thus the numerical solution can drift from satisfying the stress–strain relation. This drift can be suppressed by 
adding a stress–strain relaxation term (penalty term) to the evolution equation for P̄ following the approach used in [1]. 
The second issue is that although the momentum equation is in conservation form, the evolution equation for P̄ is not. This 
is a potential issue when solving problems with discontinuous jumps in the velocity that can occur, for example, when a 
fluid shock impacts the solid. In this case we have found that use of the stress–strain relaxation term can ameliorate issues 
related to the non-conservative form. This derives from the fact that satisfaction of the stress–strain relation together with 
the conservative treatment of the momentum equation would lead to the correct weak solution for convergent numerical 
schemes. We note that there are alternative conservative formulations of the first-order system, such as the one considered 
by Miller and Colella [10], for example.

The coupling of the numerical solutions for the fluid and solid is performed at the fluid–solid interface using an interface 
projection scheme. The scheme embeds an approximate solution of a nonlinear fluid–solid Riemann (FSR) problem into the 
numerical treatment of the interface. The solution to the FSR problem leads to formulas for the projected states of velocity 
and stress that are impedance-weighted averages of the predicted fluid and solid states adjacent to the interface. These 
formulas, which we refer to as the full projection, are extensions of the ones derived in [1] for a linearly-elastic solid. In 
addition to the full projection, we also derive a simplified projection which is easier to implement and computationally less 
costly. Numerical results indicate that the simplified projection provides nearly identical results to those given by the full 
projection for the problems considered. The new AMP scheme based on the full or simplified projection remains stable even 
for light solids when added-mass effects are large.
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