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In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks 
system which arises from the time-fractional partial differential equation. Existing fast 
numerical solver (e.g., fast approximate inversion method) cannot handle such linear 
system as the main diagonal blocks are different. The main contribution of this paper 
is to propose a fast direct method for solving this linear system, and to illustrate 
that the proposed method is much faster than the classical block forward substitution 
method for solving this linear system. Our idea is based on the divide-and-conquer 
strategy and together with the fast Fourier transforms for calculating Toeplitz matrix–
vector multiplication. The complexity needs O(MN log2 M) arithmetic operations, where 
M is the number of blocks (the number of time steps) in the system and N is the size 
(number of spatial grid points) of each block. Numerical examples from the finite difference 
discretization of time-fractional partial differential equations are also given to demonstrate 
the efficiency of the proposed method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Consider a linear system

Au = b, (1.1)

where A is the block lower triangular Toeplitz-like with tri-diagonal block (BL3TB-like) matrix of the form

A =

⎡
⎢⎢⎢⎢⎣

A(1)
1

A2 A(2)
1

...
. . .

. . .

AM · · · A2 A(M)
1

⎤
⎥⎥⎥⎥⎦ , (1.2)
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in which A(1)
1 , A(2)

1 , . . . , A(M)
1 , and A j ( j = 2, . . . , M) are N-by-N tri-diagonal matrices, u is the unknown vector, and b is 

the right hand side vector. We remark that A(1)
1 , A(2)

1 , . . . , A(M)
1 are not necessarily the same. Such a linear system arises 

from the finite difference discretization of time-fractional partial differential equation; see [14,16,39,38,35,13,28,34] and 
Section 3. In the literature, there are many applications in time-fractional partial differential equations [26], for instances, 
chaotic dynamics of classical conservative systems [32], groundwater contaminant transport [2,3], turbulent flow [7,29], 
biology [23], finance [27], image processing [1], and physics [30]. Recent numerical methods for time-fractional partial 
differential equations can be found in [38,35,13,28,34,10–12,20,33,37].

Toeplitz matrices emerge from numerous topics such as signal and image processing, numerical solutions of partial dif-
ferential equations and integral equations, as well as queueing networks; see [8,9] and the references therein. In particular, 
the triangular Toeplitz matrix plays a key role in the displacement representation of general Toeplitz matrices, which is 
fundamental in the study of structured matrices and polynomial computations; see [4,5,19,25].

Traditionally, the block forward substitution (BFS) method [18] can be straightforwardly applied to solve (1.1) in O(M2N)

arithmetic operations with O(MN) storage requirement. In order to reduce the computational cost, Lu, Pang, and Sun 
[22] recently proposed an approximate inversion method for solving (1.1) with A(k)

1 = A1 for 1 ≤ k ≤ M , where the co-
efficient matrix therefore becomes a block lower triangular Toeplitz with tri-diagonal block (BL3TB) matrix. Their idea 
is to make use of block-Toeplitz structure and approximate the BL3TB matrix by the block ε-circulant matrix that can 
be block-diagonalized by the fast Fourier transform (FFT) into a diagonal block matrix, in which each diagonal block 
is still tri-diagonal. The total computational complexity by their method is of O(MN log M) arithmetic operations that 
is much cheaper than O(M2N) arithmetic operations by the BFS method; see more details in [22]. Nevertheless, their 
approximate inversion method will be no longer available if A in (1.1) is not exact BL3TB; i.e., A(k)

1 in (1.2) are differ-
ent.

Another direct method for solving BL3TB system is the so-called block divide-and-conquer method [4,15]. Let A2k be a 
BL3TB matrix and partitioned as

A2k =
[

Ak 0
Bk Ak

]
, (1.3)

where Ak is still BL3TB and Bk is block Toeplitz. Thus, we have [4,15]

A−1
2k =

[
A−1

k 0
Ck A−1

k

]
with Ck = −A−1

k BkA−1
k . (1.4)

If A−1
k is known, the only task is to compute Ck , which is also a block Toeplitz matrix. Finally, A−1

M can be recursively 
obtained from the inverse of a very small size matrix. In other words, the divide-and-conquer method is to compute the 
inverse of AM exactly. The computational cost is of O(N2 M log M + N3M) and storage requirement is of O(N2 M) [4] since 
the inverse of a tri-diagonal matrix is usually dense. Therefore, the divide-and-conquer method may not be better than the 
BFS method for solving the BL3TB system if the block size N is large. Moreover, the divide-and-conquer method also cannot 
be applied for the BL3TB-like matrix if A(k)

1 in (1.2) are different.
The main contribution of this paper is to propose a fast direct method for solving (1.2). Existing fast numerical solver (e.g., 

fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. We illustrate 
that the proposed method is much faster than the classical block forward substitution method for solving this linear system. 
Our idea is to combine the BFS method with the divide-and-conquer strategy, to solve the BL3TB-like system in (1.1). As the 
divide-and-conquer method, the BL3TB-like matrix (1.2) is partitioned analogously to (1.3). Unlike the divide-and-conquer 
method, the inverse of the large size matrix is not calculated as that in (1.4). In our proposal, the partition is employed to 
reduce the original linear system into two half-size linear systems. Then the BFS method is exploited to solve both linear 
systems together. Meanwhile, the FFT can be applied to speed up the computation of the right hand side in the second 
half-size linear system as it contains a block Toeplitz matrix. Both half-size BL3TB-like matrices could be further reduced 
the matrix size by half until the matrices with small enough size are reached. Finally, the solution of (1.1) is recursively 
obtained. The computational complexity of the proposed method is of O(MN log2 M) operations which is cheaper than 
O(M2N) operations of the classical BFS method. We remark that our method is of O(MN) storage requirement and it 
can be applied to the general BL3TB-like system. Numerical examples are given to illustrate the efficiency of the proposed 
method.

The outline of this paper is given as follows. In Section 2, we present the proposed algorithm. In Section 3, we con-
sider coefficient matrices constructed by the finite difference discretization of time-fractional partial differential equations. 
In Section 4, we report experimental results and compare the proposed method with the other testing methods. Finally, 
concluding remarks are given in Section 5.
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