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We show feasibility and benefits of porting an adaptive multi-scale kinetic-fluid code to 
CPU–GPU systems. Challenges are due to the irregular data access for adaptive Cartesian 
mesh, vast difference of computational cost between kinetic and fluid cells, and desire 
to evenly load all CPUs and GPUs during grid adaptation and algorithm refinement. Our 
Unified Flow Solver (UFS) combines Adaptive Mesh Refinement (AMR) with automatic 
cell-by-cell selection of kinetic or fluid solvers based on continuum breakdown criteria. 
Using GPUs enables hybrid simulations of mixed rarefied-continuum flows with a million of 
Boltzmann cells each having a 24 ×24 ×24 velocity mesh. We describe the implementation 
of CUDA kernels for three modules in UFS: the direct Boltzmann solver using the 
discrete velocity method (DVM), the Direct Simulation Monte Carlo (DSMC) solver, and 
a mesoscopic solver based on the Lattice Boltzmann Method (LBM), all using adaptive 
Cartesian mesh. Double digit speedups on single GPU and good scaling for multi-GPUs 
have been demonstrated.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that transport phenomena can be described by either atomistic (kinetic) or continuum (fluid) models. 
Kinetic description in terms of particle distribution functions is more detailed and computationally more expensive com-
pared to the continuum description in terms of density, mean velocity and temperature. Two methodologies have been 
used to solve the kinetic equations: statistical particle-based methods such as Direct Simulation Monte Carlo (DSMC) or 
Particle-in-Cell (PIC) [1,2] and direct numerical solutions using computational grid in phase space [3,4]. Continuum models 
are computationally efficient but have limited range of applicability. Mesoscopic models such as Lattice Boltzmann Method 
(LBM) attempt to bridge the gap between the two methods. Multi-scale kinetic-fluid models are being developed to enable 
using kinetic and fluid solvers in different parts of systems to achieve maximum fidelity and efficiency [5–10]. Adaptive 
kinetic-fluid models apply different solvers in dynamically selected regions of physical or phase space for efficient descrip-
tion of multi-scale phenomena in complex systems. Appropriate solvers are selected using sensors locally detecting phase 
space regions where kinetic approach is required and apply fluid models in other parts of the system.

For gas dynamics in mixed rarefied-continuum regimes, the adaptive kinetic-fluid approach has been first realized using 
an Adaptive Mesh and Algorithm Refinement (AMAR) methodology introduced for DSMC-fluid coupling [11]. Later, a Unified 
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Fig. 1. The UFS AMAR framework.

Flow Solver (UFS) has been developed to combine Adaptive Mesh Refinement (AMR) with automatic cell-by-cell selection 
of direct Boltzmann solver or Euler–Navier–Stokes solvers [12] based on continuum breakdown criteria [5]. The AMAR 
methodology has been extended for hybrid modeling of radiation transport [13], and is now being developed for plasma 
simulations [6].

Fig. 1 shows the basic architecture of UFS. The AMAR core is implemented on top of Gerris Flow Solver (GFS) – an open 
source computing environment for solving partial differential equations with AMR [14]. GFS provides with automatic mesh 
generation for complex geometries, portable parallel support using the MPI library, dynamic load balancing, and parallel 
offline visualization. GFS physics includes time-dependent incompressible variable-density Euler, Stokes or Navier–Stokes 
equations with volume of fluid method for interfacial flows. A coarse-grained parallelization algorithm is based on “Forest 
of Trees” methodology [15].

UFS enables the higher degree of adaptation by using different physical models in different parts of the computational 
domain. The computational domain is decomposed into kinetic and fluid cells using physics-based continuum breakdown 
criteria. This methodology was first implemented for mixed rarefied-continuum flows and later extended for hybrid model 
of radiation transport coupling a Photon Monte Carlo (PMC) solver with a diffusion model of radiation transport selected 
based on the local photon mean free path [13].

The Kinetic Module in UFS can solve Boltzmann, Vlasov, and Fokker–Planck kinetic equations using different methods. 
Eulerian solvers use Discrete Velocity Method (DVM) for solving kinetic equations. The recently developed Adaptive Mesh 
in Phase Space (AMPS) methodology [16] can adapt mesh in both physical and velocity spaces. The DSMC, PMC and PIC 
modules are based on Lagrangian transport models [17]. The mesoscopic LBM solver uses a minimal set of discrete velocities 
as a subset of the DVM kinetic solvers [18].

Fluid Module in UFS contains multi-species Euler and Navier–Stokes solvers for reacting gas mixtures based on the Roe 
approximate Riemann solver, an exact Riemann solver with a Godunov-type scheme, AUSMPW+ scheme with MUSCL recon-
struction, and the gas-kinetic schemes [12]. For plasma simulations, multi-temperature drift-diffusion models for electrons 
and ions coupled to Poisson solver for the electrostatic field are used [8].

The present paper demonstrates feasibility and benefits of adapting the UFS framework for heterogeneous computing 
architectures using Graphical Processing Units (GPUs). GPUs have become powerful computation accelerators for a wide 
range of devices from high-end supercomputers to battery-powered tablets, and laptops [19]. For programs that map well 
to GPU hardware, GPUs offer a substantial advantage over multicore CPUs in terms of performance, performance per dollar, 
performance per transistor, and energy efficiency.

Efforts required for porting existing software to CPU–GPU architectures depend on the problem type. GPUs can be very 
effective for regular programs that operate on large arrays or matrices and access them in statically predictable ways. These 
programs exhibit extensive data parallelism and access memory in a streaming fashion requiring little synchronization. Such 
regular codes, which require no significant change in program structure, have already been ported to GPUs [20]. Irregular 
codes associated with dynamic data structures (such as graphs, trees, etc.) are more difficult to port. Nevertheless, GPUs 
are capable of accelerating many irregular codes, and there is plenty of exploitable parallelism available even in irregular 
codes [21].

Expected acceleration from porting CFD solvers to GPUs depends on the type of model and the grid type [22]. Tradi-
tional CFD solvers are based on Navier–Stokes equations. Alternative methods based on LBM and gas-kinetic schemes utilize 
elements of the kinetic theory to provide solutions beyond the Navier–Stokes equations and thus often called mesoscopic 
methods. The LBM is both computationally expensive and memory demanding, but its explicit nature and the data locality 
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