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Abstract

A new implicit time-stepping scheme which uses Runge-Kutta time-stepping
and Krylov methods as a smoother inside FAS-cycle multigrid acceleration is
proposed to stabilise the flow solver and its discrete adjoint counterpart. The
algorithm can fully converge the discrete adjoint solver in a wide range of cases
where conventional point-implicit methods fail due to either physical or numer-
ical instability. This enables the discrete adjoint to be applied to a much wider
range of flow regimes. In addition, the new algorithm offers improved efficiency
when applied to stable cases for which the conventional Block-Jacobi solver can
fully converge. Both stable and unstable cases are presented to demonstrate
the improved robustness and performance of the new scheme. Eigen-analysis is
presented to outline the mechanism of the adjoint stabilisation effect.
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1. Introduction

The adjoint method is an essential ingredient of gradient-based steady-state
CFD shape optimisation as it allows the computation of the gradient of an
objective function with respect to a large number of design variables at near
constant computational cost comparable to that of the flow solution. Two ap-
proaches are most prominently used to develop adjoint codes, the continuous
and the discrete adjoint approach [1, 2, 3, 4]. The continuous adjoint approach
re-discretises the adjoint PDE, which offers the possibility to optimise and/or
stabilise the adjoint solver by tuning the discretisation. The steady-state dis-
crete adjoint starts from the discretised equations which are then linearised
around the converged steady state flow field and transposed. This ensures that
the computed gradients are the exact gradients of the discrete model, which is a
very desirable property: the discrete gradient is then exactly zero where the flow
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