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A numerical method for a kind of time-dependent two-dimensional two-sided space 
fractional diffusion equations is developed in this paper. The proposed method combines a 
time scheme based on direction splitting approaches and a spectral method for the spatial 
discretization. The direction splitting approach renders the underlying two-dimensional 
equation into a set of one-dimensional space fractional diffusion equations at each time 
step. Then these one-dimensional equations are solved by using the spectral method based 
on weak formulations. A time error estimate is derived for the semi-discrete solution, 
and the unconditional stability of the fully discretized scheme is proved. Some numerical 
examples are presented to validate the proposed method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The fractional partial differential equations are now winning more and more scientific applications across a variety of 
fields including control theory, biology, electrochemical processes, porous media, viscoelastic materials, polymer, finance, 
etc. The universality of anomalous diffusion phenomenon in various experiments has led to an intensive investigation of
these equations in recent years. The fractional diffusion equation considered in this paper is of interest not only in its own 
right, but also in that it constitutes the principal part in solving many other more general fractional differential equations. 
We refer, e.g., to [19,20] for modeling chaotic dynamics charge transport in amorphous semiconductors, [18] for nuclear 
magnetic resonance diffusometry in disordered materials, and [15] for modeling the propagation of mechanical diffusive 
wave in viscoelastic media.

There have been a number of numerical methods constructed for the time-fractional diffusion equations; see, e.g., [13] for 
a finite difference scheme in time and spectral method in space, [34] for a particle tracking approach, [10] for a time–space 
spectral method, [35] for an alternating direction implicit scheme, [22] for finite difference schemes for a variable-order 
equation, [9] for a finite element method, and [32] for a spectral method using Jacobi polyfractonomials for fractional ODEs.

On the other hand, the space-fractional diffusion equations have also been a subject of many investigations. Among the 
existing numerical methods for this kind of fractional diffusion equations, we mention the finite difference methods based 
on the shifted Grüwald formulae in [16,17,23], spline approximations [21], the finite difference methods for Riesz frac-
tional derivatives [14,31], the spectral method based on weak formulation [11], a finite element method for the space and 
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time fractional Fokker–Planck equation [4], a Runge–Kutta discontinuous Galerkin methods for one- and two-dimensional 
fractional diffusion equations [8], a finite difference/element method for a two-dimensional modified fractional diffusion 
equation [33], and a method combining the alternating direction implicit method and the Crank–Nicolson scheme [3]. Wang 
and Wang [26] developed, without giving a stability analysis, an alternating direction implicit finite difference method for 
space-fractional diffusion equations.

In this paper we aim at designing an efficient method for solving the space fractional diffusion equation. The proposed 
method combines a stable direction splitting scheme with a spectral discretization in space that allows for efficient imple-
mentation. This work was motivated by the attempt to take double advantages of the spectral method and the direction 
splitting approach. Firstly, the fractional diffusion equation is featured by the presence of non-local operators involved in the 
definition of fractional derivatives. These non-local operators make any approximation, either low or high order methods, 
into non-sparse linear system. This nature obviously reduces the advantage of low order methods in term of computa-
tional complexity, and favours the use of high order methods if the solution to be approximated is smooth enough. It is 
well known that, as compared to low order methods, higher order methods like spectral methods require less degrees of 
freedom to achieve the same accuracy. This consideration has inspired a recent series of papers [10–12,32], which focused 
on developing spectral methods for some time/space fractional differential equations. It is worthy to mention that Wang 
et al. [28,29] showed that a fractional equation with smooth data can have non-smooth solutions. Hence, how to guarantee 
the smoothness of the solution is a difficult issue. Secondly, despite of the efficiency of the spectral method, the numeri-
cal solution of the fractional diffusion equation in high dimension requires more numerical techniques. Direction splitting 
methods are considered as powerful techniques which allow to split the underlying high dimensional problem into a set of 
one-dimensional sub-problems, thus can considerably reduce the computational complexity for some traditional equations; 
see, e.g., [2,7]. Note that Wang et al. [27,25] constructed and analyzed finite difference/ADI methods for fractional diffusion 
equations with variable coefficients. Their methods have also been shown to be fast with efficient storage.

The main purpose of this paper is to develop a stable direction splitting scheme in time with a spectral discretization in 
space for the space fractional diffusion equation. The stability of the overall scheme is rigorously established. Although such 
a combination has been constructed and analysed for a number of traditional equations, it’s extension to problems with 
fractional operators does not seem to be trivial.

The outline of this paper is as follows. In the next section we describe the underlying problem, and construct the 
direction splitting scheme. A splitting error estimate is derived. In Section 3, we propose the full discrete scheme by using a 
spectral method for the spatial discretization of the fractional differential operators, and carry out a detailed analysis for the 
stability of the proposed scheme. The unconditional stability is proved under an assumption on the diffusion coefficients. 
We give in Section 4 some implementation details and present the numerical results to verify the stability and accuracy of 
the method. Finally, we give some concluding remarks in Section 5.

2. Direction splitting scheme

We consider the following two-dimensional space fractional diffusion equation:

∂u(x, y, t)

∂t
= Lu(x, y, t) + f (x, y, t), (2.1)

where t ∈ (0, T ], (x, y) ∈ � = �2, � = (−1, 1), f (x, y, t) is a source function. L is the fractional operator defined by

Lu(x, y, t) = p
(

Dα
x u(x, y, t) + x Dαu(x, y, t)

)+ q
(

Dβ
y u(x, y, t) + y Dβu(x, y, t)

)
, (2.2)

with p and q being positive diffusion coefficients, and the fractional derivatives of order α or β with 1 < α, β < 2 being 
defined in the Riemann–Liouville sense as follows:

Dγ
x ϕ(x) = 1

	(2 − γ )

d2

dx2

x∫
−1

ϕ(ξ)dξ

(x − ξ)γ −1
, ∀x ∈ �,γ = α,β, (2.3)

x Dγ ϕ(x) = 1

	(2 − γ )

d2

dx2

1∫
x

ϕ(ξ)dξ

(ξ − x)γ −1
, ∀x ∈ �,γ = α,β. (2.4)

Usually Dγ
x is called the left-sided fractional derivative, and x Dγ the right-sided fractional derivative of order γ .

The equation (2.1) is subject to the following initial and boundary conditions:

u(x, y,0) = u0(x, y), ∀(x, y) ∈ �, (2.5)

u(x, y, t)|∂� = 0, ∀t ∈ (0, T ]. (2.6)

The sum of terms Dα
x u(x, y, t) + x Dαu(x, y, t) in (2.2) is sometimes denoted by Dα|x|u(x, y, t), called symmetrized frac-

tional derivative. It has been shown in [11] that the existence and uniqueness of a solution to (2.1)–(2.5)–(2.6) can be 
guaranteed by keeping only one derivative term in x-direction and one derivative term in y-direction in the right-hand side 
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