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We present a novel integral-equation algorithm for evaluation of Zaremba eigenvalues and 
eigenfunctions, that is, eigenvalues and eigenfunctions of the Laplace operator with mixed 
Dirichlet–Neumann boundary conditions; of course, (slight modifications of) our algorithms 
are also applicable to the pure Dirichlet and Neumann eigenproblems. Expressing the 
eigenfunctions by means of an ansatz based on the single layer boundary operator, the 
Zaremba eigenproblem is transformed into a nonlinear equation for the eigenvalue μ. For 
smooth domains the singular structure at Dirichlet–Neumann junctions is incorporated 
as part of our corresponding numerical algorithm—which otherwise relies on use of the 
cosine change of variables, trigonometric polynomials and, to avoid the Gibbs phenomenon 
that would arise from the solution singularities, the Fourier Continuation method (FC). 
The resulting numerical algorithm converges with high order accuracy without recourse to 
use of meshes finer than those resulting from the cosine transformation. For non-smooth 
(Lipschitz) domains, in turn, an alternative algorithm is presented which achieves high-
order accuracy on the basis of graded meshes. In either case, smooth or Lipschitz boundary, 
eigenvalues are evaluated by searching for zero minimal singular values of a suitably 
stabilized discrete version of the single layer operator mentioned above. (The stabilization 
technique is used to enable robust non-local zero searches.) The resulting methods, which 
are fast and highly accurate for high- and low-frequencies alike, can solve extremely 
challenging two-dimensional Dirichlet, Neumann and Zaremba eigenproblems with high 
accuracies in short computing times—enabling, in particular, evaluation of thousands of 
eigenvalues and corresponding eigenfunctions for a given smooth or non-smooth geometry 
with nearly full double-precision accuracy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper presents a novel boundary integral strategy for the numerical solution of the Zaremba eigenproblem, that is, 
numerical approximation of eigenvalues λ j , j = 1, 2, . . . and associated eigenfunctions u j ∈ H1(�) of the Laplace operator 
under mixed Dirichlet–Neumann boundary conditions (cf. equation (1) below); naturally, the main elements of our algo-
rithms are also applicable to the pure Dirichlet and Neumann eigenproblems.
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The use of boundary integral equations for the solution of Laplace eigenproblems has been explored in a number of 
contributions, including methods based on collocation [14,24] and Galerkin [39,40] boundary element approaches for the 
Dirichlet and Neumann problems. The boundary element strategy for three-dimensional Dirichlet eigenproblems presented 
in [39,40], for example, yields errors that decrease cubically with the spatial mesh-sizes. However, as mentioned in [39], 
“the convergence regions for the eigenvalues are still local” and “other techniques have to be considered and analyzed in 
order to increase the robustness”. Focusing on two-dimensional Laplace eigenvalue problems, in this paper we present a 
Nyström algorithm that can achieve any user-prescribed order of convergence for smooth and non-smooth domains alike, as 
well as a novel, robust, search algorithm that yields fast eigenvalue convergence from nonlocal initial guesses—see Section 6
for details. To the best of our knowledge, further, the present algorithm is the first boundary-integral method for eigenvalue 
problems of Zaremba type.

Integral equation formulations for eigenvalue problems are advantageous as they 1) Result in a reduction in the problem 
dimensionality; and, as described in Section 4, they 2) Greatly facilitate efficient treatment of the eigenfunction singularities 
that occur around corners and Dirichlet–Neumann transition points. As a counterpart, however, the integral form of the 
eigenvalue problem (cf. equation (4) below) is nonlinear (since the eigenvalue appears as part of the integral kernel), and 
eigenvalues and eigenfunctions must therefore be found by means of an appropriate nonlinear equation solver.

It is important to note that the eigenfunctions in equation (1) as well as the corresponding densities ψ in (6) exhibit 
singularities at corners and Dirichlet–Neumann junctions. In particular, in contrast to the situation for the pure Dirichlet or 
Neumann eigenfunctions, even for a smooth boundary � the eigenfunctions of (1) are singular: they are elements of H1(�)

but not of H2(�). The specific asymptotic forms of these singularities for both smooth and Lipschitz domains are described 
in Section 4.

In Section 5 we discuss novel discretization strategies for our integral formulation of the Zaremba eigenvalue problem 
which yield high order accuracy in spite of the poor regularity of eigenfunctions and densities near Dirichlet–Neumann 
junctions. In the smooth domain case our Zaremba eigensolver includes an adaptation of the novel Fourier Continuation 
(FC) method [3,8,30] (which accurately expresses non-periodic functions in terms of Fourier series; see Section 5.2) and it 
explicitly incorporates the asymptotic behavior of solutions near the Dirichlet–Neumann junction. For possibly non-smooth 
curves �, on the other hand, an approach is introduced in Section 5.3 which, on the basis of a graded-mesh discretiza-
tions [19,25,27,31,38], yields once again high-order accuracy—albeit not as efficiently, for smooth domains, as that resulting 
from the FC-based algorithm (cf. Remark 5.7 and Section 8.5).

A method for solution of Dirichlet eigenproblems for the Laplace operator that, like ours, is based on detection of pa-
rameter values for which a certain matrix is not invertible, was introduced in [22]. In that early contribution this Method of 
Particular Solutions (MPS) (which approximates eigenfunctions as linear combinations of Fourier–Bessel functions) performs 
the singularity search via a corresponding search for zeroes of the matrix determinant. Subsequently, [35] substituted this 
strategy by a search for zeroes of minimum singular values—an idea which, with some variations, is incorporated as part of 
the algorithm proposed presently as well. A modified version of the MPS, which was introduced in Ref. [4], alleviates some 
difficulties associated with the conditioning of the method.

As it happens, however, a direct evaluation of the zeroes of the smallest singular value ηn(μ) of our n × n discretized 
boundary integral operator is highly challenging. Indeed, as shown in Section 6, the function ηn(μ) is essentially constant 
away from its roots, and therefore descent-based approaches such as the Newton method fail to converge to the roots of ηn

unless an extremely fine mesh of initial guesses is used. A modified integral equation formulation (with associated small-
est singular values η̃n(μ)) is introduced in Section 6 that, on the basis of ideas introduced in [4], successfully tackles this 
difficulty (cf. Remark 6.3). As demonstrated in Section 8, the resulting eigensolvers, which are fast and highly accurate for 
high- and low-frequencies alike, can solve extremely challenging two-dimensional Dirichlet, Neumann and Zaremba eigen-
problems with high accuracies in short computing times. In particular, as illustrated in Section 8.6, the proposed algorithms 
can evaluate thousands of Zaremba, Dirichlet or Neumann eigenvalues and eigenfunctions with nearly full double-precision 
accuracy for both smooth and non-smooth domains. The algorithms presented in this paper can further be generalized to 
enable evaluation of eigenvalues of multiply-connected domains—for which integral eigensolvers can give rise to spurious 
resonances [15,16]; a description of the method for multiply connected domains together with a number of illustrative 
numerical examples are provided in Section 8.7.

The recent contribution [50] relies on determination of zeroes of matrix determinants to address, in the context of 
the pure Dirichlet eigenvalue problem, certain challenges posed by search methods based on use of smallest singular 
values—which are generally non-smooth function of μ. As indicated in Remark 6.4, however, a relatively straightforward 
sign-changing procedure we use yields singular values that vary smoothly (indeed, analytically!) with μ, and thus elimi-
nates difficulties arising from non-smoothness. Note that generalizations of the present methods to algorithms that rely on 
iterative singular-value computations and fast evaluations of the relevant integral operators [6,10,37] (which should enable 
solution of higher frequency/three-dimensional problems) can be envisioned.

This paper is organized as follows: Section 2 describes the Laplace–Zaremba eigenvalue problem for a class of domains 
in R2 and Section 3 puts forth an equivalent boundary integral formulation based on representation of eigenfunctions via 
single layer potentials. Section 4 then discusses the singular structure of eigenfunctions and associated integral densities 
at both smooth and non-smooth Dirichlet–Neumann junctions; these results are incorporated in the high-order numeri-
cal quadratures described in Section 5. Section 6 introduces a certain normalization procedure which leads to an efficient 
eigenvalue-search algorithm. Once eigenvalues and corresponding integral densities have been obtained, the eigenfunc-
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