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In this work we develop an adaptive and reduced computational algorithm based on 
dimension-adaptive sparse grid approximation and reduced basis methods for solving high-
dimensional uncertainty quantification (UQ) problems. In order to tackle the computational 
challenge of “curse of dimensionality” commonly faced by these problems, we employ 
a dimension-adaptive tensor-product algorithm [16] and propose a verified version to 
enable effective removal of the stagnation phenomenon besides automatically detecting 
the importance and interaction of different dimensions. To reduce the heavy computational 
cost of UQ problems modelled by partial differential equations (PDE), we adopt a weighted 
reduced basis method [7] and develop an adaptive greedy algorithm in combination with 
the previous verified algorithm for efficient construction of an accurate reduced basis 
approximation. The efficiency and accuracy of the proposed algorithm are demonstrated 
by several numerical experiments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many different computational methods have been proposed and developed during the last few decades to solve uncer-
tainty quantification problems. Among the most widely used is the sampling based Monte Carlo method and its various 
accelerated versions [13,11], which are straightforward for implementation although they are commonly blamed for slow 
convergence. A fast convergent method based on the classical idea of projection has been developed under the name of 
stochastic Galerkin methods, for which different bases of projection can be used such as piecewise finite element and 
generalized polynomials [17,35,2,32]. Another efficient sampling based method, the stochastic collocation method [34,1], 
has been developed by taking advantage of the easy implementation of Monte Carlo method and the fast convergence 
of stochastic Galerkin method. In order to alleviate the computational cost, sparse grid techniques [34,24] are applied to 
reduce the total number of collocation samples. More recently, model order reduction techniques, including the reduced 
basis method [4,12,18,8] and the proper generalized decomposition method [25], have been developed. In both cases, the 
stochastic solution is expanded with respect to a few basis functions that are constructed offline and represent high-fidelity 
solutions of the underlying PDE. When the dimension of the uncertainties becomes high, the number of isotropic projec-
tion basis functions or collocation nodes may grow exponentially fast, one computational challenge known as “curse of 
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dimensionality”. Another computational challenge stems from the fact that when the solution of the underlying model at 
one sample is expensive, the available computational resource can only afford the full solve at a few tens or hundreds sam-
ples, which is far from the required number (in the order of million or beyond) involved in a high-dimensional space. Any 
of the two challenges makes it impossible a direct application of the stochastic computational methods introduced above in 
solving high-dimensional UQ problems.

A strategy to tackle the curse of dimensionality is to take advantage of the sparsity – the importance of different di-
mensions and their interaction/combination is very different, so that only a limited number of dimensions play an effective 
role [9]. This idea has led to the development of the weighted function space based quasi Monte Carlo method [11], a priori 
and a posteriori analysis based anisotropic sparse grid construction [23], (Sobol) decomposition of function based techniques 
such as ANOVA (analysis of variance) [15], HDMR (high-dimensional model representation) [22]. Another recently developed 
method under the name of dimension-adaptive tensor-product integration [16] uses a generalized sparse grid construction 
scheme and employs hierarchical surplus from the construction as error indicators to automatically detect different impor-
tance and interaction of different dimensions. Although being essentially equivalent to the anchored ANOVA approach, it is 
more versatile with different choices of hierarchical surpluses and suitable for interpolation problems. Still, it is to blame for 
the drawback of running into stagnation phenomenon, where too early stop of the grid construction in some region occurs 
before arriving at the desired accuracy of approximation. Another drawback is it use one higher level of grid to assess the 
error indicators, resulting in an unnecessarily heavy computational cost.

In this work, we adopt the more versatile dimension-adaptive algorithm based on hierarchical surpluses and generalized 
sparse grid construction for both integration and interpolation. Moreover, we propose two remedies in addressing the draw-
backs and enhancing both its efficiency and accuracy for solving different UQ problems. As for the first drawback of running 
into stagnation, a balanced greedy algorithm was suggested in [16] and [21], where a purely greedy criteria of choosing the 
next index by hierarchical surplus for grid construction is balanced by performing the conventional sparse grid construction. 
However, it is neither possible to choose an optimal balance weight nor feasible to use the same weight through the whole 
grid construction. Rather, we propose to carry out a verification procedure in order to get rid of the stagnation phenomenon. 
The basic idea is that whenever the construction is stopped at some region by meeting certain criteria, we check whether 
it should be continued by some verification algorithms. This approach avoids the difficulty in tuning the balanced weight 
parameter and works efficiently to get out of the stagnation region for grid construction at the appropriate time.

The verification remedy has not yet been studied in the literature, neither applied in practice because it needs additional 
verification samples besides the ones used for assessing hierarchical surpluses in one higher level. This drawback is critical 
for large-scale UQ problems that already require large computational efforts in solving the underlying PDE model at one 
sample, as the second computational challenge mentioned before. In order to harness the computational burden, we em-
ploy a reduced basis method (see e.g. [30,27]), which has been used in combination with ANOVA in [19], and develop an 
adaptive and weighted algorithm in combination with the verified hierarchical approximation. Based on this idea and using 
the reduced basis method, we develop an adaptive greedy algorithm in combination with the verified dimension-adaptive 
hierarchical grid construction procedure to solve high-dimensional UQ problems. In order to take the arbitrary probability 
measure into account, we use a weighted a posteriori error bound for guiding the selection of the most representative basis 
functions [7]. This proves to be more efficient with much less basis functions in achieving the same approximation accuracy 
as the a posteriori error bound without incorporating the weight. In the end, an adaptive and reduced computational algo-
rithm is developed in efficiently and accurately solving high-dimensional UQ problems that feature sparsity and reducibility. 
A series of numerical experiments featuring various properties for both functions and the underlying PDE are carried out 
to demonstrate the efficiency and accuracy of our method and compare its computational performance to several other 
techniques.

The paper is organized as follows. We briefly introduce uncertainty quantification problems in Section 2. Section 3 is 
devoted to the development of the verified dimension-adaptive hierarchical approximation based on generalized sparse grid 
construction. In Section 4, the adaptive and weighted reduced basis method is presented, where the adaptive greedy algo-
rithm and weighted a posteriori error bound are developed in details together with the presentation of the offline–online 
computational decomposition for gaining computational efficiency. Numerical experiments are presented in Section 5 to 
demonstrate the accuracy and efficiency of the proposed computational algorithm. We close the paper by drawing some 
conclusions and perspectives in the last section.

2. Problem setting

Let (�, F, P ) denote a complete probability space, where � is a set of outcomes ω ∈ �, F is a σ -algebra of events 
and P : F → [0, 1] with P (�) = 1 is a probability measure. A real-valued random variable is defined as a measurable 
function Y : (�,F) → (R,B), being B the Borel σ -algebra on R. The probability density function of a random variable 
Y : � → � ⊂ R, being � the image of Y , is denoted as ρ . For any positive integer k ∈N+ , the k-th moment of Y is defined as

E

[
Y k

]
=

∫
�

ykρ(y)dy. (1)

Let D be an open and bounded physical domain in Rd (d = 1, 2, 3) with Lipschitz continuous boundary ∂ D . Let 
v : D × � → R represent a general real-valued random field, which is a real-valued random variable defined in � for each 
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