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We present a solver for plane wave scattering from a periodic dielectric grating with a large 
number M of inclusions lying in each period of its middle layer. Such composite material 
geometries have a growing role in modern photonic devices and solar cells. The high-order 
scheme is based on boundary integral equations, and achieves many digits of accuracy 
with ease. The usual way to periodize the integral equation—via the quasi-periodic Green’s 
function—fails at Wood’s anomalies. We instead use the free-space Green’s kernel for 
the near field, add auxiliary basis functions for the far field, and enforce periodicity in 
an expanded linear system; this is robust for all parameters. Inverting the periodic and 
layer unknowns, we are left with a square linear system involving only the inclusion 
scattering coefficients. Preconditioning by the single-inclusion scattering matrix, this is 
solved iteratively in O(M) time using a fast matrix-vector product. Numerical experiments 
show that a diffraction grating containing M = 1000 inclusions per period can be solved to 
9-digit accuracy in under 5 minutes on a laptop.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The modeling and design of periodic dielectric structures plays a central role in modern optics. Tools such as diffrac-
tion gratings, photonic crystals, meta-materials, plasmonics, and other micro-scale structures, are becoming key to efficient 
devices, including lasers, sensors, anti-reflective surfaces and absorbers [21], and solar cells [3]. For instance, in thin-film 
solar cell design [44,29] the use of periodic structures, and nanoparticle inclusions, in ordered or disordered composites, en-
hances absorption. One then seeks a grating structure with a specific arrangement of inclusions that maximizes absorption. 
Other optimization problems include the design of photonic crystal lenses [35]. Related is the inverse problem of inferring 
a structure from measurements [37,5]. Such tasks demand a large number of solutions of the direct (forward) scattering 
problem. Similar periodic and multi-particle wave scattering problems arise in acoustics and elastodynamics, and in general 
whenever a super-cell is used to approximate the response of a random composite material (e.g. [36]). Such considerations 
have spurred the development of efficient methods for solving Helmholtz and Maxwell frequency-domain boundary value 
problems in periodic geometries [21,7,14,9,10,23,13,18]. High accuracy can be challenging to achieve due to guided modes, 
resonances, and extreme parameter sensitivity.

Therefore, in this paper we consider the monochromatic scattering from a layered periodic structure containing a large 
number M of inclusions (“particles”) at given locations, as in a (generalized) photonic crystal. As shown in Fig. 1, the 
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structure is periodic in the x direction, layered in the y direction and invariant along the z direction. Because of the 
two-dimensional (2D) geometry, there exist two fundamental polarizations in the electromagnetic scattering: transverse 
electric (TE) where the magnetic field is transverse to the (x, y) plane, and transverse magnetic (TM) where the electric 
field is transverse to the (x, y) plane. We will focus on TE polarization, noting that our technique applies to TM polarization 
without any essential difficulty.

The grating scattering problem has been mathematically very well studied. It has been proved that for an arbitrary 
periodic dielectric and incident angle the problem has a unique solution for all frequencies with the possible exception of 
a countable set of resonances (singular frequencies [11]) at which the solution is not unique. Such physical resonances are 
not to be confused with Wood’s anomalies (for the definition see the next section), which are frequencies where at least 
one of the Bragg diffraction orders points along the grating, i.e. in the x direction. A Wood’s anomaly does not prevent the 
solution from being unique, although it does cause arbitrarily large sensitivity with respect to the incident wave angle or 
frequency [33], and also causes problems with certain integral equation methods [10]. One of the advantages of our scheme 
is that it is applicable and accurate at or near Wood’s anomalies, without any modifications.

There exists a wide range of numerical methods for periodic diffraction, including boundary integral equations [2,14,
10,23,13,18], finite element methods [4,8], Fourier expansion based methods [38], and continuation methods [15]. In the 
time domain, the finite difference scheme has been discussed in [26]. The advantages of the integral approach over finite 
elements and finite differences are that it reduces the dimension by one (vastly reducing the number of unknowns), and 
achieves high-order accuracy with appropriate surface quadratures. However, the resulting linear system is often dense, 
making a naive matrix-vector product expensive when the number of unknowns is large. In this paper, we will reduce this 
cost via the fast multipole method (FMM) [24].

More specifically, we propose an integral approach based on the free space Green’s function; this bypasses the consid-
erable complexities of computing the periodic Green’s function [30,13]. We split the representation of the scattered field in 
the grating structure into near field and far field components. The near field is represented by standard free-space Helmholtz 
single- and double-layer potentials on the material interfaces, while the far field is taken care by a local expansion (Fourier–
Bessel or J expansion) whose coefficients are fixed by enforcing the periodic boundary condition explicitly in the linear 
system. This builds upon recent ideas of the last author and co-workers [9,10,18].

Solving for discretized layer densities on each of the M inclusion boundaries would introduce an unnecessarily large 
number of unknowns. Hence, following [22,32], we precompute the inclusion scattering matrices, then treat the set of out-
going scattering coefficients as a reduced set of unknowns. When particles are sub-wavelength, and not extremely close to 
each other, this is highly accurate with only 20 or so unknowns per particle [32]. The full rectangular linear system then 
couples these to the grating interface densities and periodizing J -expansion coefficients. By eliminating the last two (via a 
Schur complement and pseudoinverse) we are left with a square linear system for the particle scattering coefficients, which 
we precondition with a block-diagonal matrix and then solve via GMRES with FMM acceleration, with effort scaling linearly 
in M . The result is a robust, efficient, high-order accurate solver that we expect to be useful for design and optimization 
problems for periodic photonic devices.

The outline of the paper is as follows. Section 2 gives the mathematical formulation of the periodic problem. Section 3
proposes the integral approach for the scattering from a periodic structure without particle inclusions, based on the free 
space Green’s function. Section 4 reviews classical multi-particle scattering and discusses the evaluation of the scattering 
matrix. The quasi-periodizing scheme combining all the above techniques is given in Section 5, and numerical experiments 
are shown in Section 6. We draw conclusions in Section 7.

2. Problem formulation

Consider the plane-wave incident time harmonic scattering (with time dependence e−iωt ) from a 2D periodic (or grating) 
structure with period d. As shown in Fig. 1, the unit cell � = [−d/2, d/2] × R consists of three layers, denoted by �1, �2
and �3. Let �1 and �2 denote the two smooth interfaces separating the layers. The left and right boundaries of � j are 
denoted by L j and R j , j = 1, 2, 3. Assume the permittivity ε is given as ε1, ε2 and ε3 in the three layers respectively. 
A large number M of particles, collectively denoted by �p , with the same permittivity εp , are located inside �2. The 
permeability μ is assumed to be constant everywhere.

For TE polarization, in which case the total electric field is E(x, y) = (0, 0, u), the full time harmonic Maxwell equations{∇ × E = iωμH
∇ × H = −iωεE

are reduced to the Helmholtz equation:

�u + k(x)2u = 0 , (1)

where x := (x, y), and where the wavenumber k takes one of four values,

k(x) =
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⎪⎪⎩
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