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In this work, we consider the application of Discontinuous Galerkin (DG) solutions to 
open channel flow problems, governed by two-dimensional shallow water equations (SWE), 
with solid curved wall boundaries on which the no-normal flow boundary conditions are 
prescribed. A commonly used approach consists of straightforwardly imposing the no-
normal flow condition on the linear approximation of curved walls. Numerical solutions 
indicate clearly that this approach could lead to unfavorable results and that a proper 
treatment of the no-normal flow condition on curved walls is crucial for an accurate DG 
solution to the SWE. In the test case used, errors introduced through the commonly used 
approach result in artificial boundary layers of one-grid-size thickness in the velocity field 
and a corresponding over-prediction of the surface elevation in the upstream direction. 
These significant inaccuracies, which render the coarse mesh solution unreliable, appear 
in all DG schemes employed including those using linear, quadratic, and cubic DG 
polynomials. The issue can be alleviated by either using an approach accounting for errors 
introduced by the geometric approximation or an approach that accurately represents the 
geometry.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The shallow water equations (SWE) serve as an excellent model for incompressible flow with horizontal scales much 
larger than depth. The SWE are used extensively in modeling many environmental flows, such as tides, hurricane induced 
coastal flooding, open channel and riverine flow. Simulation of these problems often involves large, geometrically compli-
cated domains and integration over a long period of time. Numerical methods to accurately solve the SWE must be able 
to propagate long waves and accurately simulate convective processes. Successful continuous Galerkin (CG) finite element 
solutions to the SWE include, but are not limited to, those devised in [1–4]. Discontinuous Galerkin (DG) finite element 
methods (see [5–7] and references therein for reviews and detailed accounts of DG methods), which excel in the solution 
of propagation- and convection-dominated problems, have emerged as a powerful alternative for solving the SWE [8–15]. 
Conceptually similar to finite volume (FV) methods, DG methods inherently posses the property of being conservative on 
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the elemental level, a desirable property when coupling flow and transport equations. Unlike FV methods, high-order DG 
schemes on unstructured meshes can be constructed in a straightforward manner. Since they employ a piecewise discon-
tinuous approximation, DG methods are able to accommodate non-conforming meshes and allow the use of polynomial 
approximations of arbitrary order in each element, thus making them naturally well-suited for an hp-adaptive discretiza-
tion. In addition, the parallel implementation of DG schemes is highly scalable when used in conjunction with explicit time 
integration schemes [10].

While DG methods have numerous favorable properties, one major drawback of DG solutions in comparison to CG so-
lutions on a given mesh is the larger number of degrees of freedom, which directly implies greater computational costs. 
The performance study of DG and CG methods for the SWE in [16] demonstrates that, for linear elements on identical 
meshes, the cost per time step of the DG solution [8,9] is approximately four to five times higher than that of the CG so-
lution [2] (the latter solves the generalized wave continuity equation, a reformulated form of the SWE). Such a higher cost 
is not as alarming as it seems as the subsequent study [10] demonstrates that the DG method has comparable or higher 
efficiency in terms of obtaining a specified error level for a given computational cost and in terms of scalability on parallel 
machines. Most SWE solvers are first and second order accurate methods that are based on cell-averaged FV and linear 
finite elements. Indeed, for problems with smooth solutions, as demonstrated in [17,18], DG solutions offer a significant 
computational cost-per-accuracy when using high-order elements, i.e. elements with polynomial interpolants of degree p
greater than unity.

Developments made over the years, described in a number of papers [8–10,12,19], enable Dawson et al. [13] to apply 
the linear-element DG methods to a realistic modeling of hurricane-induced coastal and inland flooding. In [13], the results 
from linear-element DG methods are validated against the observation data and compared with the results from ADvanced 
Circulation (ADCIRC) code [2], a CG-based SWE solver used extensively in such applications. Solutions, computed with an 
identical high-resolution mesh and physical parameter values, from these two methods agree well in most of the domain; 
however, significant disagreement in the results is seen in inland areas, especially in meandering channels. In the channels, 
the surge level of the ADCIRC solution is in good agreement with the observation data. However, the surge level in the DG 
solution is damped compared to that of the ADCIRC solution and attenuates at a faster rate in the upstream direction. To a 
certain degree, this indicates that the DG solution is more diffusive in channels and hinders DG methods from becoming a 
viable tool in storm-surge applications.

In this work, motivated in part by an attempt to resolve the issue mentioned above, we investigate the effect of curved-
wall boundary treatments in DG solutions for SWE to open channel flow. As widely employed in CG calculations, DG 
calculations simply replace channel curved walls with a linear approximation (see for example [20,21]) and apply the 
no-normal flow condition on each straight segment in a straightforward manner. In gas dynamics, Bassi and Rebay [22]
demonstrate that DG solutions are highly sensitive to the accuracy of the representation of a solid curved wall, a boundary 
on which the no-normal flow condition is prescribed. Numerical results shown therein (also see [23]) demonstrate that the 
DG methods under p-refinement fail to yield a numerical solution that converges to the true solution when imposing the 
no-normal flow (or slip) condition on the linear approximation of the geometry, i.e. on a set of straight segments. Errors 
introduced by the geometric approximation appear to have a strong effect on the solution away from the boundary. Bassi 
and Rebay [22] show that this issue can be resolved by approximating the geometry using a polynomial of degree that 
is at least equal to the degree of the DG polynomial but not less than two, i.e. using at least iso-parametric elements for 
p > 1 and super-parametric elements for p = 1 for boundary-mesh elements. As shall be seen in detail in Section 5, simply 
prescribing the no-normal flow condition on the linear approximation of the solid curved wall of the channel leads to the 
presence of resolution-dependent artificial boundary layers and an over-prediction of the surface elevation on the upstream 
side. In this work, in addition to considering the curvilinear iso- and/or super-parametric elements, we employ a so-called 
curvature-boundary-condition approach, proposed originally for the Euler equations in [23], for the treatment of the no-
normal flow condition on solid curved walls. Such an approach adjusts a component enforcing the boundary condition in 
a DG formulation so that the physical no-normal flow conditions are better approximated on the straight-sided-element 
mesh.

The remainder of the paper is organized as follows. In Section 2, we provide a description of the two-dimensional SWE. 
A DG method for SWE described in [8,9] is briefly summarized in Section 3 (also, we briefly discuss considerations to achieve 
a so-called well-balanced property in high-order DG schemes in this section). Section 4 contains the detailed account of the 
two different approaches for treating the no-normal flow condition on a solid wall. In this study, a converging/diverging 
channel problem is used as a test problem and is described in Section 5.1. Section 5.2 presents results from the study on 
the flow problem. Conclusions are drawn in Section 6.

2. Governing equations

By assuming a hydrostatic pressure distribution and a uniform velocity profile in the vertical direction, flow in a channel 
can be modeled by two-dimensional shallow water equations (SWE), also known as the St. Venant equation. The SWE 
consist of the depth-averaged continuity equation and x- and y-momentum equations written here in a conservative form 
as:

∂q

∂t
+ ∇ · F(q) = s(q, x, t), (x, t) ∈ � × [0,∞) (1)
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