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This paper presents a numerical method and analysis, based on the variational discretiza-
tion concept, for optimal control problems governed by elliptic PDEs with interfaces. 
The method uses a simple uniform mesh which is independent of the interface. Due 
to the jump of the coefficient across the interface, the standard linear finite element 
method cannot achieve optimal convergence when the uniform mesh is used. Therefore the 
immersed finite element method (IFEM) developed in Li et al. [20] is used to discretize the 
state equation required in the variational discretization approach. Optimal error estimates 
for the control, state and adjoint state are derived. Numerical examples are provided to 
confirm the theoretical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Optimal control problems governed by elliptic PDEs with interfaces arise in many applications, such as the optimization 
or optimal control of a process in a domain which is composed of several materials separated by curves or surfaces (called 
interfaces). Coefficients in the elliptic PDEs may have a jump across the interface corresponding to different materials. Hence, 
it is a challenge to develop efficient numerical methods for such optimal control problems.

Elliptic interface problems have been extensively discussed in the literature. We use a uniform Cartesian mesh in our 
method. One consideration is that it is difficult and time consuming to generate body fitted meshes for complicated or 
moving interfaces. How to design accurate methods on unfitted meshes has attracted a lot of attention in the literature. The 
immersed finite element method (IFEM) proposed in [20] is among a few methods that based on linear finite element dis-
cretizations and unfitted meshes, for example, uniform triangulations. The idea of the IFEM is to modify the basis functions 
in the interface triangles so that the interface conditions are satisfied. Optimal approximation capabilities of the immersed 
finite element space have been proved in [19]. And optimal error estimates in L2 and H1 norms have been given in [10].

Numerical methods for optimal control problems governed by elliptic PDEs have been discussed in many publications 
(see, e.g., [1,5–8,11–14,17,18,21,22]). However, to the best of our knowledge, there are few papers that concern the numer-
ical method based on unfitted meshes for the optimal control problems governed by elliptic PDEs with interfaces. In [2], 
Apel and Sirch considered the distributed optimal control problem governed by elliptic equation with discontinuous coef-
ficients. The diffusion coefficient has different values on polygonal Lipschitz subdomains. To avoid a reduced convergence 
order, graded meshes are used.
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In this paper, we try to discretize the distributed control problem governed by elliptic interface problems by combining 
the variational discretization concept and the IFEM on uniform triangulations. Optimal error estimates are derived for the 
control, state and adjoint state, which are the same as that obtained by standard finite element methods for the control 
problem without interfaces. In the case of the control without constraints, the discretization leads to a symmetric but 
indefinite system of equations. A block diagonally preconditioned MINRES algorithm [23,24] is used to solve the indefinite 
system. In the case of the control with constraints, a nonlinear and non-smooth equation for the discrete control is obtained. 
A numerically implementable fix-point iteration is used to solve that single equation for the discrete control. Finally, some 
numerical examples with or without control constraints are provided to verify the theoretical analysis. We also compare the 
numerical results obtained by the IFEM and the standard linear FEM on the same mesh respectively. One can see that the 
numerical method based on the IFEM improves the accuracy significantly.

The remainder of this paper is organized as follows. In Section 2, the model problem is introduced and optimality con-
ditions and regularity results of the problem are given. Section 3 presents the discretization of the optimal control problem 
based on the variational discretization approach and the immersed finite element method. And some error estimates are 
derived. In Section 4, the implementation details of the numerical method are described briefly. In Section 5, numerical 
examples are provided to confirm the theoretical results. Some conclusions are made in Section 6.

2. Model problem and optimality conditions

Consider the elliptic interface problem,

−∇ · (β(x)∇ y(x)) = u(x) in �\�, (2.1)

[y]� = 0, [β∂n y]� = 0, (2.2)

y = 0 on ∂�, (2.3)

where � ∈ R
2 is a bounded domain separated by a closed interface � ∈ C2, [v]� denotes the jump of the function v(x)

across an interface �. We assume that the interface � separates the domain � into two sub-domains �+ and �− , and 
�− lies strictly inside �, see Fig. 2 for an illustration. The vector n is the unit normal direction of � pointing to �+ . The 
coefficient β(x) is a positive and piecewise constant, that is,

β(x) = β+ if x ∈ �+, β(x) = β− if x ∈ �−. (2.4)

The weak formulation of the state equations (2.1)–(2.3) is to

find y ∈ H1
0(�) such that a(y, v) = (u, v)L2(�) ∀v ∈ H1

0(�), (2.5)

where a(y, v) = ∑
s=±

∫
�s βs∇ y · ∇vdx and (u, v)L2(�) = ∫

�
uvdx.

Problem 2.1. (P) Consider the optimal control problem of minimizing

J (y, u) = 1

2

∫
�

(y − yd)
2dx + α

2

∫
�

u2dx (2.6)

over all (y, u) ∈ H1
0(�) × L2(�) subject to the elliptic interface problem (2.1)–(2.3) and the control constraints

ua ≤ u ≤ ub. (2.7)

The regularization parameter α is a fixed positive number and the set of admissible controls for (P) can be written as

Uad =
{

u ∈ L2(�) : ua ≤ u ≤ ub

}
.

We make the following smoothness assumption on the data of the problem, that is, yd ∈ L2(�), and ua, ub ∈ L2(�).
Since the problem is quadratic and convex, by applying standard techniques see [16,25], we have the existence of solu-

tions and the optimality conditions.

Theorem 2.2. The problem (P) admits a unique optimal control u∗ ∈ L2(�), with an associated state y∗ ∈ H1
0(�) and an adjoint state 

p∗ ∈ H1
0(�) that satisfy the state equation

a(y∗, v) = (u∗, v)L2(�) ∀v ∈ H1
0(�), (2.8)

the adjoint equation

a(v, p∗) = (y∗ − yd, v)L2(�) ∀v ∈ H1
0(�), (2.9)
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