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In this paper, we present a new approach of isogeometric analysis (IGA) based on 
the extended Loop’s subdivision scheme. This strategy allows us to integrate geometric 
modeling and physical simulation. The geometries can be open and with holes. Our 
proposed method performs geometric modeling via the extended Loop’s subdivision 
which allows arbitrary topological structure, treats concave/convex vertices, and has at 
least C1-continuity everywhere. It is capable of handling domains with arbitrary shaped 
boundary represented by piecewise cubic B-spline curves. We apply an efficient integration 
technique to the domain elements with a fast evaluation technique for closed Loop’s 
subdivision surfaces. As an example, the Poisson equation is solved on three planar 
domains. We develop the approximate estimation of finite element in the limit function 
space of the extended Loop’s subdivision. A detailed study on the convergence character 
is given with the comparison to the classical finite element analysis (FEA) with linear 
elements. Numerical experiments are consistent with our theoretical results. It shows that 
compared with the FEA with linear elements, the IGA scheme based on extended Loop’s 
subdivision converges faster and behaves more robustly with respect to the mesh quality.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The finite element method is a vital technique in solving partial differential equations (PDEs), which has a more than 
fifty years history of development and accumulated a strong mathematical foundation. The central idea is using piecewise 
polynomial functions over a finite-dimensional space to approximate the solution of PDEs. Classical finite element analysis 
technology adopts some low order finite elements as approximation and analysis tools for geometry. Therefore, for Computer 
Aided Design (CAD) objects, there exists a mesh generation process in order to get their computational domains, which is 
very time-consuming and brings undesirable discretization errors.

IGA was originally introduced by Hughes et al. [20] which uses volumetric Non-uniform Rational B-splines (NURBS) [12,
22] or T-splines [21,23–25] to replace traditional finite elements, therefore it is able to improve the efficiency, quality and 
accuracy during the analysis procedure. IGA integrates CAD and FEA by adopting the uniform representation such as NURBS 
to describe the geometry and perform the numerical analysis. It avoids the difficulty of mesh generation. Moreover, we 
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can use h-refinement by knot insertion, and p-refinement by order elevation to improve the simulation accuracy without 
changing the geometry. NURBS require structured initial meshes. To support more flexible geometry representation from 
design, IGA has incorporated T-splines into analysis, which possess T-joints and supports local refinement. The locally refined 
B-splines, denoted LR B-splines, is recently proposed in [9] as an implementation of T-splines.

Surface subdivision is a powerful technique in surface design which can efficiently generate smooth surfaces from arbi-
trary initial meshes through a simple refinement process. It is capable of constructing surfaces with no limitation on the 
topology of the control meshes, and recovering sharp features such as creases and corners. Subdivision surfaces and func-
tions defined on them have played a key role in computer graphics and numerical analysis. A class of piecewise smooth 
surface representations in [7] were introduced based on subdivision to reconstruct smooth surface from scattered data. 
Thin-shell finite element analysis [4] was used for describing both the geometry and associated displacement fields. The 
limit function representation of Loop’s subdivision for triangular meshes was combined with the diffusion model to arrive 
at a discretized version of the diffusion problem [1]. Mixed finite element methods based on surface subdivision technology 
were used to construct high-order smooth surfaces with specified boundary conditions in [14–16].

Subdivision surfaces can be compatible with NURBS as the standard in CAD systems which are capable of the refinability 
for B-spline techniques. The geometry models can be refined to arrive at a satisfactory accuracy of the numerical simulation 
where the subdivision schemes are simple, efficient and can be applied to meshes with arbitrary topology. However, it has 
not gained actual and extensive application in engineering. The principal difficulty is the exact and fast evaluation of the 
subdivision surfaces at arbitrary parameter values. Fortunately, there are some pioneering works about them [18,19].

There recently have been a few works on the application of subdivision methods in IGA. Volumetric IGA based on 
Catmull–Clark solids was investigated in [27]. For the IGA methods over complex physical domain, Powell–Sabin splines 
were used as IGA tools for advection–diffusion–reaction problems [29]. The bivariate splines in the rational Bernstein–Bézier 
form over the triangulation was applied in IGA [30]. A reproducing kernel triangular B-spline-based finite element method 
was proposed to solve PDEs [31].

Contributions. In this paper, we consider planar geometries with sharp/smooth boundaries and holes, and their control 
meshes have arbitrary topology. We adopt the finite element function space induced from the extended Loop’s subdivision 
technique to represent both geometry and the solution space. Using this strategy, we are able to handle domains with 
arbitrary shaped boundary represented by piecewise cubic B-spline curves, which are the standard output of the modern 
CAD software systems. We establish the approximation properties of the limit formation of the extended Loop’s subdivision. 
Using Poisson equation with the Dirichlet boundary condition as the numerical simulation model which corroborate the 
theoretical results, the IGA based on the extended Loop’s subdivision can be naturally integrated into the framework of the 
standard FEA. Through the detailed numerical experiments, we demonstrate its efficiency, accuracy and robustness with the 
comparison to the classical FEA with piecewise linear elements.

The paper is organized as follows: Section 2 briefly reviews Loop’s subdivision scheme including the extension around 
boundaries, and Stam’s fast evaluation strategy for the limit surface of the subdivision. Section 3 describes IGA based on the 
extended Loop’s subdivision using the Poisson equation with the Dirichlet boundary condition. In Section 4 we establish the 
approximation properties with the aid of the Bramble–Hilbert lemma. Section 5 shows detailed numerical experiments with 
the comparison to the FEA with linear elements. Section 6 is the conclusion and future work.

2. Extended Loop’s subdivision for surfaces

The proposed IGA method is based on the extended Loop’s subdivision technique for surfaces. In this section, we briefly 
review Loop’s subdivision scheme, its extended scheme, and Stam’s fast evaluation strategy for the limit surfaces of the 
subdivision.

2.1. Loop’s subdivision scheme

Surface subdivision provides a simple, efficient algorithm to represent arbitrary topological free-form surfaces. A given 
surface mesh can be used to define a smooth surface by the limit of the subdivision process. Several subdivision schemes 
for generating smooth surfaces have been proposed. Some of them are interpolatory, i.e., the vertex positions of the coarse 
mesh are fixed, and only the newly added vertex positions need to be computed (see [8] for quadrilateral meshes, and [6,26]
for triangular meshes), while others are approximatory (see [3,5] for quadrilateral meshes, [13] for triangular meshes, and 
[17] for general polyhedra meshes). These approximatory subdivision schemes compute both old and new vertex positions 
at each refinement step.

Loop proposed a subdivision scheme [13] for triangular meshes. The limit of this process is a smooth surface that 
is C2-continuous except at a finite number of extraordinary vertices where the surface is C1-continuous. This pro-
cess subdivides each triangle into four sub-triangles. The original Loop’s subdivision is only applied to closed meshes 
which includes the rules of vertex recomputation and edge insertion points. Consider a vertex xk
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