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Acoustic multiple scattering by a cluster of cylinders in an acoustic medium is considered. 
A fast recursive technique is described which takes advantage of the multilevel Block 
Toeplitz structure of the linear system. A parallelization technique is described that enables 
efficient application of the proposed recursive algorithm for solving multilevel Block 
Toeplitz systems on high performance computer clusters. Numerical comparisons of CPU 
time and total elapsed time taken to solve the linear system using the direct LAPACK 
and TOEPLITZ libraries on Intel FORTRAN, show the advantage of the TOEPLITZ solver. 
Computations are optimized by multi-threading which displays improved efficiency of the 
TOEPLITZ solver with the increase of the number of scatterers and frequency.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance. 
MS is required in a wide variety of physical contexts such as the implementation of “invisibility” cloaks, the characterization 
of effective parameters of heterogeneous media, and the fabrication of dynamically tunable structures, i.e. superlenses and 
waveguides, etc. Our interest here is with examining acoustic MS from 2D cylindrical structures, although the method may 
be extended to 3D to include elastodynamic [1] or electromagnetic material properties. A broad review of the literature 
on single and MS and of the concepts of MS is given in [2]; a survey of more recent findings on MS from obstacles in 
acoustic and elastic media is provided in [1]. The development of numerically efficient techniques and algorithms that are 
appropriate for a wide range of problems is one of the main challenges in wave propagation research. The expensive costs 
of direct matrix inversion of a linear system motivates development of alternative numerically efficient methods [31]. Here 
we consider a recursive technique that is not limited by physical parameters such as the frequency or spacing between the 
scatterers, but is based on the structure of the MS formulation. The exact approach described in this paper takes advantage 
of multilevel Block Toeplitz structure of the linear system to speed up the matrix solution in a manner suitable for parallel 
computation. The recursive algorithm is robust, and resistant to machine errors.
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Fig. 1. An arbitrary planar configuration of M cylinders Sm with outer radius am and inner radius bm , m = 1, M .

1.1. Problem definition

The two-dimensional (2D) MS problem may be reduced using Graf’s addition theorem [3, eq. (9.1.79)] to an infinite linear 
system of equations which can be truncated to the finite dimensional system of the form:

Xb = a. (1.1)

In this equation a is the column vector of the known coefficients of the excitation field, b is the column vector of the 
unknown scattering coefficients, and X is the interaction matrix that defines the coupling between each scatterer of the 
configuration (see Appendix A for details):

X =

⎡⎢⎢⎣
I −T(1)P1,2 −T(1)P1,3 · · · −T(1)P1,M

−T(2)P2,1 I −T(2)P2,3 · · · −T(2)P2,M

...
...

...
. . .

...

−T(M)PM,1 −T(M)PM,2 −T(M)PM,3 · · · I

⎤⎥⎥⎦ . (1.2)

The matrix T( j) is the transition or T-matrix for scatterer j. The matrix P j,m = [P j,m
ql

]
is a Toeplitz matrix; it depends on the 

position vector l jm depicted in Fig. 1, and takes into account the interaction between the scatterers, whereas the transition 
matrix T( j) depends on the shape and the physical properties of the material of cylinder, as well as the boundary conditions 
on the interfaces.

Here we consider 2-dimensional configurations of circularly cylindrical scatterers, for which the T-matrices become di-
agonal, see [1] for specific details. In particular, P j,m = [P j,m

ql

]
(q, l ∈ Z), where P j,m

ql = V +
l−q(l jm) (q = −N j, N j , l = −Nm, Nm) 

( j, m = 1, M , j �= m), where the functions V ±
n (x) are

V ±
n (x) = H (1)

n (k|x|)e±in arg x. (1.3)

Here H (1)
n is the Hankel function of the first kind of order n, x is the position vector of point P (see Fig. 1), k = ω/c is the 

wavenumber, c is the acoustic speed, ω is the frequency with time dependence e−iωt assumed. The vectors in eq. (1.1) then 
have the structure

a =

⎛⎜⎜⎝
T(1)a(1)

T(2)a(2)

...

T(M)a(M)

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
b(1)

b(2)

...

b(M)

⎞⎟⎟⎠ , a( j) =

⎛⎜⎜⎜⎝
A( j)

−N

A( j)
−N+1
...

A( j)
N

⎞⎟⎟⎟⎠ , b( j) =

⎛⎜⎜⎜⎝
B( j)

−N

B( j)
−N+1
...

B( j)
N

⎞⎟⎟⎟⎠ ( j = 1, M), (1.4)

where a( j) ( j = 1, M) is the vector of coefficients of the excitation field around cylinder S j (see Fig. 1).
The matrix X is a complex valued dense N × N matrix, and N is proportional to the number of scatterers M multiplied 

by 2N + 1 where N is the mode number. For high frequencies and a large number of scatterers, the system (1.1) becomes 
an extremely large linear system. The computational complexity of inverting X by direct methods is O (N3), i.e. the Gauss–
Jordan method requires N3 multiplication operations and N3 addition–subtraction operations, the Gauss method using LU
decomposition requires N3/3 multiplication and N3/3 addition–subtraction operations. The memory requirements to solve 
(1.1) by direct methods grow as O (N2). This is prohibitive for many realistic multiple scattering problems at high frequen-
cies and a large number of scatterers. For large N and required number of iterations, the most widely used Krylov Space 
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