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We develop a fourth order accurate finite difference method for solving the three-
dimensional elastic wave equation in general heterogeneous anisotropic materials on 
curvilinear grids. The proposed method is an extension of the method for isotropic 
materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. 
The proposed method discretizes the anisotropic elastic wave equation in second order 
formulation, using a node centered finite difference method that satisfies the principle 
of summation by parts. The summation by parts technique results in a provably stable 
numerical method that is energy conserving. We also generalize and evaluate the super-
grid far-field technique for truncating unbounded domains. Unlike the commonly used 
perfectly matched layers (PML), the super-grid technique is stable for general anisotropic 
material, because it is based on a coordinate stretching combined with an artificial 
dissipation. As a result, the discretization satisfies an energy estimate, proving that 
the numerical approximation is stable. We demonstrate by numerical experiments that 
sufficiently wide super-grid layers result in very small artificial reflections. Applications of 
the proposed method are demonstrated by three-dimensional simulations of anisotropic 
wave propagation in crystals.

Published by Elsevier Inc.

1. Introduction

This paper describes a fourth order accurate numerical method for calculating wave propagation in general anisotropic 
elastic materials, i.e., materials in which waves propagate with different speeds in different directions. Such materials occur 
in several applications. One class of anisotropic materials are crystals. Here the directionally dependent wave propagation 
properties follow from the symmetries and structure of the atomic bonds in the crystal. In seismic applications, isotropic 
layered materials behave anisotropically when they are subjected to waves where the wavelength is much longer than 
the thickness of the layers [1]. Furthermore, fractures in an isotropic material can lead to directionally dependent wave 
propagation properties [2], i.e., anisotropic behavior. More generally, spatial homogenization of a fine grained heterogeneous 
isotropic elastic material is known to result in a coarser grained elastic model with anisotropic properties [3,4].

Many wave propagation codes for isotropic elastic materials are based on finite difference methods on staggered 
grids [5–7]. These methods approximate the elastic wave equation in first order velocity-stress formulation. Unfortunately, 
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the staggered grid approach is non-trivial to generalize to general anisotropic materials. The fundamental difficulty is to 
place the dependent variables on the staggered grid, such that all terms in the anisotropic Hooke’s law can be approxi-
mated accurately and, at the same time, making the numerical method stable. Since an isotropic material has anisotropic 
properties when the equations are transformed to curvilinear coordinates, similar difficulties occur for staggered grid meth-
ods on curvilinear meshes. Node centered methods, which discretize the elastic wave equation in second order displacement 
formulation, do not have this difficulty. For example, the spectral element method, described in [8], is naturally formulated 
for general linear stress-strain relationships, and has successfully been used for modeling general anisotropy [9] as well as 
realistic topography using curvilinear (unstructured hexahedral) meshes [10].

The present paper has two objectives. First, we describe a fourth order accurate node centered finite difference scheme 
for wave propagation in general anisotropic elastic materials. Our scheme satisfies the principle of summation by parts 
(SBP) and is a generalization of the method described in [11,12], which is implemented in the elastic wave propagation 
open source code SW4, version 1.0 [13]. The finite difference scheme is fourth order accurate, stable, and energy conserving. 
We here generalize the method to a fully anisotropic material in curvilinear coordinates, allowing for accurate modeling 
of realistic topography. Our main motivation for using the summation by parts method is to obtain a spatial discretization 
that satisfies an energy estimate, which guarantees stability of the numerical approximation for heterogeneous materials on 
curvilinear grids with free surface or Dirichlet boundary conditions. We remark that our SBP method uses ghost points just 
outside the boundaries to enforce the boundary conditions in a strong (point-wise) sense. There is a related SBP method 
that does not use ghost points and instead enforces the boundary conditions in a weak sense using penalty techniques, see 
e.g. [14–16].

The second objective is to analyze and numerically evaluate the super-grid far-field truncation technique for anisotropic 
elastic materials. Super-grid far-field conditions truncate very large or unbounded domains to finite extent by adding sponge 
layers outside the domain of interest. Inside the layers, the wave equation is modified by a combination of grid stretching 
and high order artificial dissipation. Compared to perfectly matched layers (PML) [17], the greatest strength of the super-grid 
technique is that the overall numerical method is provably stable, as long as the underlying numerical method is stable 
on a curvilinear grid. Note that the PML equations can have unstable solutions (growing exponentially in time) for some 
anisotropic materials [18] that violate the so-called geometric stability condition [19]. We have previously proven that the 
isotropic discretized elastic wave equation with super-grid layers satisfies an energy estimate [12], precluding exponential 
growth of the numerical solution. In the present paper, we extend that analysis to general anisotropic elastic materials on 
curvilinear grids. An additional strength of the super-grid technique is its simplicity and low computational cost. In contrast 
to the PML method, super-grid does not rely on augmenting the wave equation with additional differential equations that 
govern additional dependent variables. A potential weakness of the super-grid technique is that it does not achieve the 
‘perfect’ non-reflecting property of PML. However, numerical experiments indicate that artificial reflections decay rapidly 
with the width of the super-grid layers.

This paper is organized as follows. In Section 2, we review the equations of anisotropic elastic wave propagation in Carte-
sian coordinates. Section 3 generalizes the results of Section 2 to curvilinear coordinates. The finite difference discretization 
is presented in Section 4, where we also present an efficient way of estimating the stability limit for the time step. Section 5
describes the super-grid technique and numerical experiments are presented in Section 6. Here we verify the accuracy of 
the proposed finite difference scheme, demonstrate the accuracy of the super-grid far-field truncation technique, and verify 
energy conservation of the numerical solution. Conclusions are given in Section 7.

2. The anisotropic elastic wave equation

To make the presentation self-contained and to define a consistent notation, we start by introducing the governing equa-
tions in a form that is amenable for constructing the SBP discretization. For further background information, we recommend 
an advanced text book on solid mechanics, e.g. [20].

We consider the time-dependent elastic wave equation in a three-dimensional domain x ∈ �, where x = (x(1), x(2), x(3))T

are the Cartesian coordinates and u = (u(1), u(2), u(3))T are the Cartesian components of the three-dimensional displacement 
vector. In displacement formulation, the elastic wave equation takes the form

ρ
∂2u

∂t2
= ∇ · T + F, x ∈ �, t ≥ 0, (1)

∇ · T = G T
s C Gs u =: Lu, (2)

subject to appropriate initial and boundary conditions. Here, ρ is the density, T is the stress tensor, and F is the external 
forcing per unit volume. The spatial operator L is called the 3 × 3 symmetric Kelvin–Christoffel differential operator ma-
trix [20]. Let Ti j and Ei j be the Cartesian components of the symmetric stress and strain tensors, respectively. We adopt 
Voigt’s vector notation,

σ = (T11,T22,T33,T23,T13,T12)
T , e = (E11,E22,E33,2E23,2E13,2E12)

T ,

which allows Hooke’s law to be expressed in terms of the 6 × 6 stiffness matrix C , which is symmetric and positive 
definite [20]. Because C is symmetric, it has 21 unique elements, corresponding to the 21 parameters of a general anisotropic 



Download English Version:

https://daneshyari.com/en/article/6931196

Download Persian Version:

https://daneshyari.com/article/6931196

Daneshyari.com

https://daneshyari.com/en/article/6931196
https://daneshyari.com/article/6931196
https://daneshyari.com

