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A polynomial preserving recovery method is introduced for over-penalized symmetric in-
terior penalty discontinuous Galerkin solutions to a quasi-linear elliptic problem. As a 
post-processing method, the polynomial preserving recovery is superconvergent for the lin-
ear and quadratic elements under specified meshes in the regular and chevron patterns, as 
well as general meshes satisfying Condition (ε, σ). By means of the averaging technique, 
we prove the polynomial preserving recovery method for averaged solutions is supercon-
vergent, satisfying similar estimates as those for conforming finite element methods. We 
deduce superconvergence of the recovered gradient directly from discontinuous solutions 
and naturally construct an a posteriori error estimator. Consequently, the a posteriori er-
ror estimator based on the recovered gradient is asymptotically exact. Extensive numerical 
results consistent with our analysis are presented.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years there have been superconvergence results of the gradient and gradient recovery schemes [9,12,20,23,
31–33,36–38], while their contributions are based on finite element approximations and attract many researchers from 
the fields of modern engineering and scientific computation. The Zienkiewicz–Zhu (ZZ) error estimator [38] is referred to 
the superconvergence patch recovery (SPR), which is based on gradient recovery from the gradient of the finite element 
solution on patches in the discrete least-squares fitting sense. The robustness of the ZZ patch recovery is originated from 
its superconvergence under structured meshes. As a new strategy, polynomial preserving recovery (PPR) has first been 
introduced by Zhang in [24,34] with the use of the fitted finite element solution values to recover the gradient. The PPR 
keeps all known superconvergence properties of the ZZ patch recovery, out-performing the SPR in the cases of quadratic 
element at edge centers and linear element for the chevron mesh [36]. The PPR has superconvergence in mildly structured 
grids as well as anisotropic grids [34,35]. Therefore, for gradient recovery to finite element solutions, the PPR method is a 
good alternative.
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It is well known that if the recovered quantity better approximates the exact one, then it can be used in constructing 
asymptotically exact a posteriori error estimates (see [1]). The PPR becomes standard in finite element methods and has 
been adopted in some commercial softwares (COMSOL etc.) as a superconvergence tool.

We consider the following second-order quasi-linear elliptic problem{−∇ · (a(x, u)∇u) = f (x), in �,

u = 0, in ∂�,
(1)

where � is a bounded convex domain in R2 with a smooth boundary ∂�, and n is the unit outward normal vector to ∂�. 
We assume 0 < a1 ≤ a(x, v) ≤ a2, x ∈ �̄, v ∈ R for some positive constants a1, a2 and a(x, v) ∈ C2

b (�̄ ×R), where C2
b (�̄ ×R)

is the space of twice continuously differentiable functions on R whose first and second order derivatives are bounded in 
�̄×R. It holds from [15] that there exists a unique weak solution u to (1) and u ∈ C2+δ with δ ∈ (0, 1) when f ∈ Cδ(�) and 
the boundary ∂� is smooth. The equation (1), supplemented with the homogeneous Dirichlet boundary condition, describes 
an equilibrium state of a chemical species of the concentration u in a porous medium with a source term f (x).

Interior penalty discontinuous Galerkin (IPDG) methods are a powerful simulation tool for solving linear or nonlinear 
equations (see e.g. [4,11,14,17,18,22,25,28]). There are some primal DG versions belonged to IPDG methods (see [3,19]), such 
as symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), incomplete interior penalty 
Galerkin (IIPG) as well as its corresponding over-penalized interior penalty methods. We are interested in an over-penalized 
symmetric interior penalty Galerkin (OPSIPG) method [27,30] to realize a gradient recovery. One of reasons is that its penalty 
parameters can be bounded above rather than sufficiently large in the usual SIPG method for refined grids. The OPSIPG 
method we use preserves the integral terms on hybrid multiplication of jump or average of test and trial functions on 
interior edges. The weakly over-penalized symmetric interior penalty method (WOPSIP) presented by Brenner in [6] ignores 
the hybrid multiplication terms. The OPSIPG and WOPSIP methods produce an ill-conditioned discrete system, which results 
from the over-penalization terms. Fortunately, it can be remedied by a simple block-diagonal preconditioner (see [6]) and 
a multilevel preconditioner in [8]. Now the main question lies in how to implement the PPR technique into discontinuous 
Galerkin solutions under the framework of discontinuous Galerkin finite element methods.

In the present work, we aim to the PPR technique based on discontinuous Galerkin solutions and its theoretical analysis. 
The PPR technique is good for arbitrary order Lagrange finite elements, then for simplicity, we would focus on the linear and 
quadratic elements, which are widely used in practice. Several steps for the PPR are needed: we choose a patch including 
necessary or enough points first, and then by the fitted solution values recover the gradient, and further construct an a 
posteriori error estimate in the energy norm. Due to the PPR partial to the symmetry of patches, we shall consider some 
specified meshes in the regular and chevron patterns, as well as general meshes satisfying Condition (ε, σ ). In case that the 
resultant DG system becomes ill-conditioned from over-penalized parameters, it is important to use a simple block-diagonal 
preconditioner remedying the problem. To the best of our knowledge, this is the first theoretical superconvergence proof for 
the PPR implemented on discontinuous Galerkin solutions to nonlinear elliptic problems. Furthermore, the proposed method 
can be used to solve time-dependent diffusion problems, e.g., the problem discussed in [13]. Our method can be applied to 
the spatial discretization part at each time level while maintaining the time discretization part unchanged.

The remainder of this paper is organized as follows. In Section 2 we introduce the over-penalized interior penalty dis-
continuous Galerkin (OPIPDG) formulas in the broken Sobolev space to approximate elliptic equations. In Section 3, we state 
and prove some preliminary lemmas for OPSIPG scheme analogous to those appear in the usual SIPG method. In Section 4, 
the gradient recovery operator will be constructed for OPSIPG solutions, thereafter we prove the main results for the gradi-
ent recovery, which can be used to define an a posteriori error estimator. In the last section, several numerical examples are 
given to illustrate superconvergence of the gradient recovery for linear and quadratic elements in some structured meshes 
as well as unstructured meshes, and also show that an a posteriori error estimator is asymptotically exact for a corner 
singularity problem.

2. The over-penalized discontinuous Galerkin method

Let Eh be a subdivision of � into disjoint open elements such that �̄ = ⋃Nh
i=1 Ē i , where Ei is a triangle in 2D and Nh

is the number of all elements. We let hk := diam(Ēk) and h := max
E∈Eh

hk . It is assumed that the family of subdivisions Eh is 

shape regular and each element E ∈ Eh shall be an affine image of a standard reference element. Assume that the mesh Eh
is quasi-uniform: for all Ei ∈ Eh , there exists a constant τ > 0, independent of h, such that

h ≤ τhi, (2)

where ρi denotes the diameter of the largest circle inscribed in Ei . We introduce the set of all edges of the mesh Eh by

Fh := {e1, e2, · · · , ePh , ePh+1, · · · , eMh },
where{

ei ⊂ �, if 1 ≤ i ≤ Ph,

ei ⊂ ∂�, if Ph + 1 ≤ i ≤ Mh.
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