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A lattice Boltzmann method (LBM) approach to the Charney–Hasegawa–Mima (CHM) 
model for adiabatic drift wave turbulence in magnetised plasmas is implemented. The 
CHM-LBM model contains a barotropic equation of state for the potential, a force term 
including a cross-product analogous to the Coriolis force in quasigeostrophic models, 
and a density gradient source term. Expansion of the resulting lattice Boltzmann model 
equations leads to cold-ion fluid continuity and momentum equations, which resemble 
CHM dynamics under drift ordering. The resulting numerical solutions of standard test 
cases (monopole propagation, stable drift modes and decaying turbulence) are compared 
to results obtained by a conventional finite difference scheme that directly discretizes 
the CHM equation. The LB scheme resembles characteristic CHM dynamics apart from an 
additional shear in the density gradient direction. The occurring shear reduces with the 
drift ratio and is ascribed to the compressible limit of the underlying LBM.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) has been established as a promising tool for computations in fluid dynamics, includ-
ing turbulence, reactive and complex flows. The LB method to model fluid partial differential equations in the framework of 
a reduced discrete kinetic theory has also been applied to plasma physics. Problems like magnetohydrodynamic turbulence 
(treated for example in Refs. [1–14]), magnetic reconnection [15–17], and a first approach to electrostatic turbulence [18]
have been addressed in this framework.

The Charney–Hasegawa–Mima (CHM) equation serves as a basic prototypical two-dimensional one-field model for colli-
sionless electrostatic drift wave turbulence in magnetised plasmas with cold ions and isothermal electrons with an adiabatic 
response. Drift wave turbulence taps free energy from the background plasma pressure gradient to drive advective nonlinear 
motion of pressure disturbances by the E × B drift velocity perpendicular to the magnetic field B . Parallel dynamics are 
captured by the electron currents which are balancing the pressure deviations electrostatically with an adiabatic response 
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along the magnetic field. The spatial scale is highly anisotropic permitting us to decouple the parallel dynamics from the 
perpendicular drift plane motion obeying the two-dimensional (normalised) CHM equation [19,20](

1 − ∇2
)∂δφ

∂t
+ ∂δφ

∂ y
−

{
δφ,∇2δφ

}
= 0 (1)

where the advective nonlinearity is expressed by a Poisson bracket {A, B} = ∂x A ∂y B − ∂y A ∂x B . The equation is normalised
according to x ← x/ρs and t ← κnωcit for the length and time scales and fluctuations δφ ← κ−1

n (eφ/Te) for the electrostatic 
potential φ. These scales represent the dominant contributions to turbulent transport in magnetised plasmas, where the 
drift frequency ω ∼ (ρs/Ln)ωci appears to be lower in magnitude then the ion gyro-frequency ωci = cs/ρs describing the 
gyro-motion of ions around the magnetic field lines. The magnitude is specified by the ratio of the drift scale ρs = √

mi Te/eB
(corresponding to a gyro-radius of ions of mass mi at electron temperature Te) to the gradient length Ln = |∂x ln n0(x)|−1 of 
the static background density n0(x) and is typically defined by the drift ratio κn = ρs/Ln � 1. The sound speed cs = √

Te/mi

is given in terms of the electron temperature and ion mass. Finite ion temperature (Ti > 0) effects arise when the ion 
gyro-radius ρi = √

mi Ti/eB approaches typical fluctuation scales and are beyond the scope of the model. More detailed 
gyrokinetic or gyrofluid models put emphasise on accurate averaging procedures over gyro-motion and modifications to the 
polarization equation [21–23].

The CHM equation can be either obtained from a gyrokinetic model, or from the continuity and momentum equations 
for a cold uniformally magnetised ion fluid (Ti � Te) with adiabatic electron response and a negative background den-
sity gradient in x-direction, ni = ne = n0(x) exp[eφ/kTe]. The normalised ion continuity and momentum equations can be 
expressed in terms of the potential instead of density [24] as

κn
d

dt
δφ + ∇ · u = κnu · ∇x (2)

κn
d

dt
u + ez × u = −∇δφ (3)

where d/dt = ∂t + u · ∇ is the advective derivative. Expanding δφ and u in an asymptotic series with the drift ratio κn � 1
as small expansion parameter and accordant ordering [24] yields the CHM equation (1). Replacing the drift ratio κn with 
the Rossby number Ro and identifying the electrostatic potential fluctuations with the dimensionless surface height reveals 
the isomorphism to the quasi-geostrophic single layer shallow water equations in the β-plane approximation. By replacing 
the density gradient with a bottom topography or a spatially varying Coriolis frequency the CHM equation is resembled in 
the limit of a small Rossby number Ro � 1. Advances with the lattice Boltzmann method to the shallow water equations 
have been made by Zhong et al. [25–27] and Dellar [28].

2. Lattice Boltzmann model

2.1. Boltzmann equation

Starting point for the lattice discretisation is the Boltzmann equation for the kinetic distribution function f (x, ξ , t) with 
a Bhatnagar–Gross–Krook (BGK) collision operator C = −( f − f eq)/τc , which expresses the relaxation to a local Maxwellian 
for a time constant τc . Applying the diffusive scaling t → t/ε2 and x → x/ε on the Boltzmann equation results in its 
dimensionless form [29]

∂

∂t
f + 1

ε
ξ · ∇ f = 1

ε2

[
A( f − f eq) + F

]
, (4)

where source and force terms are included in a forcing function as F (x, ξ , t) = −a · ∇ξ f (x, ξ , t) + s(x, ξ , t) and the single 
time collision operator is defined by A = −1/ (ετ ).

The Knudsen number ε = λm/L0 and the non-dimensional relaxation time τ = τc/tc are here defined in relation to char-
acteristic drift scale L0 = ρs and to the collision time tc = λm/U0 with mean free path length λm = emτc and characteristic 
(drift) velocity U0 = κncs . The dimensionless relaxation time τ = U0/em relates the flow velocity to the (lattice) molecular 
velocity em whereas the Mach number Ma = U0/cs is identified with the drift parameter κn .

The dynamics in the fluid limit, given by eqs. (2) and (3), can be consistently described with the kinetic equation (4)
assuming a local Maxwellian equilibrium distribution function of the form [6]

f eq = φ

(2π
)D/2
exp

[
− (ξ − u)2

2


]
. (5)

The squared dimensionless barotropic speed of sound 
 = φ/(2κ2
n ) results from the barotropic pressure term P =

φ2/(2κ2
n ) appearing on the macroscopic level as in eq. (3). The isothermal squared speed of sound is defined by θ = 1/κ2

n .
Macroscopic quantities are defined by taking velocity moments over the distribution function
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