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Nonlinear convergence problems in numerical reservoir simulation can lead to unacceptably 
large computational time and are often the main impediment to performing simulation 
studies of large-scale problems. We analyze the nonlinearity of the discrete transport 
(mass conservation) equation for immiscible, incompressible, two-phase flow in porous 
media in the presence of viscous, buoyancy, and capillary forces. Although simulation 
problems are multi-dimensional with large numbers of cells and variables, we find that 
the essence of the nonlinear behavior can be understood by studying the discretized 
(numerical) flux function for the interface between two cells. The numerical flux is 
expressed in terms of the saturations of the two cells. Discontinuities in the first-order 
derivative of the flux function (referred to as kinks) and inflection lines are identified as 
the cause of convergence difficulty. These critical features (kinks and inflections) change the 
curvature of the numerical flux function abruptly, and can lead to overshoots, oscillations, 
or divergence in Newton iterations.
Based on our understanding of the nonlinearity, a nonlinear solver is developed, referred 
to as the Numerical Trust Region (NTR) solver. The solver is able to guide the Newton 
iterations safely and efficiently through the different saturation ‘trust-regions’ delineated 
by the kinks and inflections. Specifically, overshoots and oscillations that often lead to 
convergence failure are avoided. Numerical examples demonstrate that our NTR solver 
has superior convergence performance compared with existing methods. In particular, 
convergence is achieved for a wide range of timestep sizes and Courant–Friedrichs–Lewy 
(CFL) numbers spanning several orders of magnitude. In addition, a discretization scheme 
is proposed for handling heterogeneities in capillary-pressure–saturation relationship. 
The scheme has less degree of nonlinearity compared with the standard Single-point 
Phase-based Upstream weighting scheme, leading to an improved nonlinear convergence 
performance especially when used together with our NTR solver. Our proposed numerical 
solution strategy that is based on the numerical flux and handles capillarity extends the 
previous work by Jenny et al. (2009) [6] and Wang and Tchelepi (2013) [7] significantly.
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Nomenclature

Abbreviations

CFL Courant–Friedrichs–Lewy number
CPVI cell pore volumes injected
DIC Decoupled Integral Capillarity
FIM Fully Implicit Method
NTR Numerical Trust Region
SIM Sequential Implicit Method
SPU Single-point Phase-based Upstream weighting

Constants

g gravitational acceleration

Greek

α Newton-update angle
β Brooks–Corey coefficient
ε size of the buffer zone
λ phase mobility
λT total mobility
μ phase viscosity
φ porosity
ρ phase density
τ characteristic time for gravity segregation
	 contraction factor
ξ chopping ratio (also called damping factor)

Symbols

∇ divergence or gradient

Variables

C integral form of capillarity
F numerical flux
f analytical flux
h height
J Jacobian matrix

k permeability
kr relative permeability
L length
N number of cells in a simulation domain
Ng gravity number
p pressure
Pc capillary pressure
Pc,e capillary entry pressure
Pe Peclet number
Q mass flow rate of a phase
q volumetric flow rate of a phase
R residual
S phase saturation
t time
u phase velocity
uT total velocity

Superscripts

k iteration index
n timestep index
− left side of a cell interface
+ right side of a cell interface
∗ dimensionless quantity

Subscripts

α a particular phase, either wetting or nonwet-
ting

c capillary flux
D downstream with respect to total velocity
inflect inflection point
n nonwetting phase
U upstream with respect to total velocity
vg viscous–buoyancy flux
w wetting phase

1. Introduction

Numerical simulation is widely used to understand, predict, and manage subsurface fluid migration with applications 
to oil/gas recovery, groundwater remediation, and CO2 geological sequestration. The reservoir models often have complex 
geometry with highly detailed descriptions of the heterogeneity, and the coupled conservation laws that describe the mul-
tiphase fluid flow and transport are highly nonlinear. Several methods are available to solve the conservation equations 
numerically [1]. The use of explicit time integration schemes generally poses severe restrictions on the timestep size, es-
pecially for large and heterogeneous simulation problems where the Courant–Friedrichs–Lewy (CFL) numbers can vary by 
several orders of magnitude in the domain [2]. Implicit time integration is usually preferred in these situations.

Implicit schemes such as the Fully Implicit Method (FIM) [1], or the Sequential Implicit Method (SIM) [1,3], usually 
solve the conservation equations (cast in residual form) using the Newton method. For a target timestep, a sequence of 
Newton iterations is performed until the solution of the nonlinear algebraic equations is obtained. Each iteration requires 
construction of the Jacobian matrix and solution of the resulting linear system. Due to the nonlinearity of the coupled 
conservation equations, the Newton method is not guaranteed to converge if the timestep is large [1]. When convergence 
fails within a specified computational effort, the Newton scheme is restarted with a smaller timestep, and the previous 
effort is wasted. The new smaller timestep is chosen heuristically. This heuristic timestep control technique is cumbersome 
and problem specific [1,4,5]. Even when such heuristics work, they tend to be conservative and can result in unnecessarily 
long simulation times.

Our objective is to develop an unconditionally convergent nonlinear solver for multiphase transport in porous media. 
Having such a capability not only will improve the computational speed of numerical simulations, but will also allow the 
timestep size to be selected based on accuracy considerations (time truncation error) as opposed to the ability of the 
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