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In this paper we introduce a class of fully decoupled time-marching schemes (velocity–
pressure–displacement splitting) for the coupling of an incompressible fluid with a thin-
walled elastic or viscoelastic structure. The time splitting combines a projection method 
in the fluid with a specific Robin–Neumann treatment of the interface coupling. A priori 
energy estimates guaranteeing unconditional stability are established for some of the 
schemes. The accuracy and performance of the methods proposed are illustrated by a 
thorough numerical study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical problems describing the mechanical interaction of an elastic thin-walled structure with an incompressible 
fluid flow appear in a wide variety of engineering fields: from the aeroelasticity of sailing boats and parachutes, to slosh-
ing dynamics in tanks, heat exchangers design, micro-encapsulation technology and the biomechanics of animal cells and 
physiological flows (see, e.g., [1–8]).

Typically, these coupled problems (and other multi-physics problems in general) are discretized by exploiting the hetero-
geneous nature of the mechanical system. For instance, the fluid and the solid equations are often discretized by different 
time-stepping schemes adapted to their distinct mathematical properties. The time-discretization of the coupling conditions 
determines the so-called coupling scheme: implicit, semi-implicit and explicit (see, e.g., [9–11] for recent reviews).

With an implicit coupling scheme no time lag exits between the fluid and solid time-marchings. This can deliver un-
conditional stability and optimal accuracy, but at the price of solving a computationally demanding coupled problem at 
each time-step. The corresponding solution procedures are traditionally referred to in the literature as: monolithic and par-
titioned. Monolithic methods solve the coupled problem as a single system of equations (see, e.g., [12–16]). Partitioned 
methods, on the contrary, exploit the heterogeneous nature of the system via (recurrent) separate solutions of the fluid and 
solid equations, with appropriate interface conditions (see, e.g., [17–21]). Partitioned solution procedures are very appealing 
because of their intrinsic modularity, which enables the reuse of independent efficient solvers. Such an advantage comes 
however at a price, computational efficiency over a monolithic approach is not necessarily guaranteed (see, e.g., [12,14]).
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Stable and less computationally onerous alternatives to implicit coupling are the so-called semi-implicit coupling 
schemes. These methods enforce a specific explicit/implicit treatment of the interface coupling conditions (see, e.g., [22,23]) 
and are often combined with a fractional-step time-marching in the fluid (see, e.g., [24–28]) or in the solid (see, e.g., 
[29–32]). The implicit part of the coupling (which, as above, can be solved in a monolithic or a partitioned fashion) guaran-
tees stability, while the explicit one reduces computational complexity.

Explicit coupling schemes (also termed loosely coupled) uncouple the fluid and solid time-marchings via appropriate ex-
plicit discretizations of the interface conditions. The resulting solution procedures are thus naturally partitioned. The design 
and the analysis of stable and accurate explicit coupling schemes for incompressible fluid–structure interaction problem is 
a challenging problem. This is due to the fact that the interface coupling can be extremely stiff (see, e.g., [33]). Though sta-
bility has been an open problem for years (see [34]), the most intricate issue appears to be accuracy. The explicit coupling 
schemes reported in [34,35] guarantee stability but at the expense of a degradation of accuracy, which requires suitable cor-
rection iterations. In the case of the coupling with an elastic thin-walled solid, unconditional stability is achieved with the 
explicit coupling scheme introduced in [29], which is known to yield very poor accuracy (see [30,36]). Numerical evidence 
suggests that enhanced accuracy can be obtained with the variants recently reported in [31,32]. Unfortunately, if physical 
damping is present in the structure equations, these coupling schemes are no longer explicit. These issues are overcome by 
the Robin–Neumann based explicit coupling schemes proposed in [37], which simultaneously deliver unconditional stability 
and optimal (first-order) time accuracy. A fundamental ingredient in the stability and accuracy of these methods is a specific 
combination of the interface Robin consistency of the coupled problem with a monolithic time-stepping in the fluid.

Since the pioneering work by Chorin and Temam (see [38,39]), projection methods have become one of the most 
widespread techniques for the numerical solution of the incompressible Navier–Stokes equations in primitive variables (see, 
e.g., [40–43] and the references therein). These methods segregate the computation of the velocity and of the pressure in 
terms of two decoupled elliptic problems which make them very appealing for large scale computations. The contribution 
of the present paper is to show how the explicit Robin–Neumann paradigm of [37] can be effectively used with a projec-
tion based time-marching in the fluid. An approach in this direction, intended to deliver second-order accuracy, has been 
recently reported in [44]. It is however not clear how to implement the interface splitting therein within a finite element 
framework.

The key idea of the schemes proposed in this paper lies in the derivation of an intrinsic fractional-step time-stepping of 
the interface Robin consistency. This preserves the stability and accuracy of the original Robin–Neumann splitting without 
compromising the velocity/pressure uncoupling in the fluid time-marching. In particular, the resulting solution procedures 
enable a fully decoupled computation of the whole fluid–solid state. The velocity/pressure splitting in the fluid introduces 
additional perturbations of the kinematic coupling which make the analysis much more intricate than in [37]. For a lin-
ear coupled problem involving the Stokes equations and a general (Reissner–Mindlin type) viscoelastic shell model, a priori 
energy estimates guaranteeing unconditional stability are derived for some of the variants. The proposed fully decoupled 
schemes are also formulated within a non-linear framework, involving the incompressible Navier–Stokes equations (in mov-
ing domains) and a non-linear viscoelastic shell model. A thorough numerical study, based on different linear and non-linear 
fluid–structure interaction examples, illustrates the accuracy and performance of the methods proposed.

The rest of the paper is organized as follows. Section 2 is devoted to the derivation and the analysis of the methods 
within a linear representative setting. In Section 3, the proposed fully decoupled schemes are formulated within a non-linear 
setting. The numerical results are presented and discussed in Section 4. Finally, a summary of the conclusions and some 
directions of further investigation are given in Section 5.

Some preliminary results of the present work have been announced, without proof, in [45].

2. Derivation and analysis in the linear case

We consider a simplified linear model problem in which the fluid is described by the Stokes equations, in a fixed 
domain, and the structure by a linear viscoelastic Reissner–Mindlin shell model (see, e.g., [46,47]). Basically, we assume 
that the displacements of the shell are infinitesimal and that the Reynolds number in the fluid is small. We denote by 
� ⊂ R3 the fluid domain and by ∂� its boundary. The fluid boundary is partitioned as ∂� = � ∪ �, where � stands for 
the fluid–structure interface. Since the structure is thin-walled, the interface � is itself the reference configuration of the 
shell mid-surface (see Remark 2.2 below). The exterior unit-vector normal to ∂� is denoted by n. For a given vector field v

defined on the surface �, the symbols v⊥
def= (v · n)n and v‖

def= v − v⊥ will denote, respectively, the normal and tangential 
components of v .

The resulting coupled problem reads as follows: find the fluid velocity u : � ×R+ → R3, the pressure p : � ×R+ → R, 
the solid displacement d : �×R+ → R3 and the rotation vector θ : �×R+ → R3, satisfying the Reissner–Mindlin kinematical 
assumption θ⊥ = 0, such that

⎧⎨
⎩

ρf∂t u − divσ (u, p) = 0 in �,

divu = 0 in �,

σ (u, p)n = −p�n on �,

(1)
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