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An efficient moving mesh finite difference method is developed for the numerical solution 
of equilibrium radiation diffusion equations in two dimensions. The method is based on 
the moving mesh partial differential equation approach and moves the mesh continuously 
in time using a system of meshing partial differential equations. The mesh adaptation is 
controlled through a Hessian-based monitor function and the so-called equidistribution and 
alignment principles. Several challenging issues in the numerical solution are addressed. 
Particularly, the radiation diffusion coefficient depends on the energy density highly 
nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion 
strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff 
method which has been known in literature to retain the accuracy and convergence order 
of finite difference approximation for parabolic equations. Numerical examples with multi-
material, multiple spot concentration situations are presented. Numerical results show 
that the method works well for radiation diffusion equations and can produce numerical 
solutions of good accuracy. It is also shown that a two-level mesh movement strategy can 
significantly improve the efficiency of the computation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Radiation diffusion plays an important role in a variety of physical applications such as inertially confined fusion, com-
bustion simulation, and atmospheric dynamics. When photon mean free paths are much shorter than characteristic length 
scales, a diffusion approximation can be used to describe the radiation penetrating from a hot source to a cold medium. This 
diffusion approximation forms a highly nonlinear diffusion coefficient and gives a sharp hot wave steep front (often referred 
to as a Marshak wave). Solutions near this steep front can vary dramatically in a very short distance. Such complex local 
solution structures make radiation diffusion an excellent example for using mesh adaptation methods because the number 
of mesh points can be prohibitively large when a uniform mesh is used.
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Generally speaking, there are two types of radiation diffusion equations, equilibrium and non-equilibrium systems. When 
the energy density E satisfies the relation E = T 4, where T is temperature, the system is called in an equilibrium state and 
otherwise in a non-equilibrium state. Radiation diffusion has attracted considerable attention from researchers in the past; 
e.g., see [3,16,21,23–25,28–30]. For example, foundations of radiation hydrodynamics can be found in the book [21] while 
numerical techniques for radiation diffusion and transport are addressed systematically in the book [3]. Rider et al. [25]
study multi-material equilibrium radiation diffusion equations and propose a class of algorithms with the Newton–Krylov 
(GMERS) method preconditioned by a multi-grid method as a special example. Ovtchinnikov and Cai [23] study a parallel 
one-level Newton–Krylov–Schwarz algorithm for an unsteady nonlinear radiation diffusion problem.

On the other hand, there are only a few published works that have employed mesh adaptation for the numerical solution 
of radiation diffusion equations. Winkler et al. [26,27] use an adaptive moving mesh method to solve radiation diffusion and 
fluid equations in one dimension. Unfortunately, their method has difficulty with mesh crossing and cannot be extended 
in multi-dimensions. Lapenta and Chacón [16] study an equilibrium radiation diffusion equation in one dimension using 
an adaptive moving mesh method. Pernice and Philip [24] use the AMR method (a structured adaptive mesh refinement 
method) to solve two-dimensional equilibrium radiation diffusion equations. They employ a fully implicit scheme to in-
tegrate the partial differential equations (PDEs), JFNK (Jacobian-free Newton–Krylov) [14,15,22,25] to solve the resulting 
nonlinear algebraic equations, and the FAC (Fast Adaptive Composite) preconditioner [19,20] to precondition the implicit 
coefficient matrix. Their numerical results show that the method can capture the fronts of Marshak waves and have good 
accuracy for problems with smooth initial solutions.

The objective of this paper is to study the finite difference (FD) solution of two-dimensional equilibrium radiation diffu-
sion equations using an adaptive moving mesh method. The method is based on the so-called moving mesh PDE (MMPDE) 
approach [10] with which the mesh is moved continuously in time using an MMPDE. The latter is defined as the gradi-
ent flow equation of a meshing functional formulated based on mesh equidistribution and alignment and taking into full 
consideration of the shape, size and orientation of mesh elements [7]. The method is combined with treatments of high 
nonlinearity and preservation of solution nonnegativity of the equations. The high nonlinearity comes from the diffusion 
coefficient. We use a coefficient-freezing predictor–corrector procedure to linearize the PDEs. More specifically, at the pre-
diction stage the diffusion coefficient is calculated using the energy density at the previous time step while at the correction 
stage the coefficient is calculated using the energy density obtained at the prediction stage. This predictor–corrector proce-
dure is known to be comparable to the Beam and Warming linearization method in terms of accuracy and stability [17]. It 
is also easy and efficient to implement since it contains only two steps of the lagged diffusion computation. Note that for 
each stage we only need to solve linear PDEs so there is no need for nonlinear iteration. Moreover, the procedure allows an 
easy and effective dealing of negative values occurring in the computed energy density. Radiation diffusion equations admit 
nonnegative energy densities. It is crucial for numerical approximation to preserve this property. Excessive negative values 
in the computed solution not only introduce unphysical oscillations but also can cause the computation to exit unexpect-
edly. We use a cutoff strategy with which negative values in the computed energy density are replaced with zero after each 
stage. It has been shown in [18] that the cutoff strategy retains the accuracy and convergence order of FD approximation 
for parabolic PDEs.

The moving mesh method, together with the above described treatments for nonlinearity and preservation of solution 
nonnegativity, is applied to a two-dimensional equilibrium radiation diffusion equation for two multi-material, multiple 
spot concentration scenarios. The numerical results show that the method is able to catch interfaces and onsets of new 
interfaces and concentrate mesh points near them. The results are comparable to those obtained by Pernice and Philip [24]
using the AMR method and to those obtained with the uniform mesh of a much larger size. Moreover, it is shown that 
the computational efficiency can be significantly improved by a two-level mesh movement strategy [6] while maintaining a 
comparable level of accuracy.

An outline of the paper is as follows. The physical problem and the governing equations are described in Section 2. 
The moving mesh method and the treatments of nonlinearity and preservation of solution nonnegativity are discussed in 
Section 3. In Section 4 we present numerical results obtained for two multi-material, multiple spot concentration scenarios. 
Finally, Section 5 contains conclusions.

2. Problem description

Radiation diffusion occurs in a variety of astrophysical and laboratory settings and can be formulated in a number of 
forms; e.g., see Mihalas and Mihalas [21]. For a simple setting where the material temperature is in equilibrium with the 
radiation energy density, radiation diffusion can be modeled by a nonlinear parabolic PDE in dimensionless form as

∂ E

∂t
= ∇ · (D L(E)∇E), (2.1)

where E is the dimensionless gray radiation energy density and D L(E) is Larsen’s form of the flux-limited diffusion coeffi-
cient [1,13] defined as

D L(E) =
(
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. (2.2)
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