
Journal of Computational Physics 298 (2015) 711–740

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A Monte Carlo method with negative particles
for Coulomb collisions ✩

Bokai Yan, Russel E. Caflisch

Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90095-1555, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 June 2014
Received in revised form 9 June 2015
Accepted 12 June 2015
Available online 2 July 2015

Keywords:
Coulomb collisions
Monte Carlo method
Negative particle method
Prediction–correction
Boltzmann equation

In this work we propose a novel negative particle method for the general bilinear collision 
operators in the spatial homogeneous case and apply it to Coulomb collisions. This new 
method successfully reduces the growth of particle numbers from the numerical time scale 
to the physical time scale for Coulomb collisions. We also propose a particle resampling 
method which reduces the particle number to further improve the efficiency. Various 
numerical simulations are performed to demonstrate the accuracy and efficiency of the 
method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the numerical study of non-equilibrium plasma physics, the simulation of long range Coulomb collisions between 
charged particles (electrons and ions) is of crucial importance. The particles are represented by a distribution f (t, v) in phase 
space, at time t with velocity v. Coulomb collisions can be modeled by a Landau–Fokker–Planck (LFP) equation as the grazing 
limit of the Boltzmann equation. Direct Simulation Monte Carlo (DSMC) [4] is the prevalent numerical method for solving 
LFP equations, since deterministic methods suffer from formidable computational costs due to the high dimensionality of 
the distribution function.

Two widely used DSMC methods are those of by Takizuka and Abe [21] (henceforth TA) and Nanbu [14], and recently 
studied extensively in, for example, [9,10,22]. Bobylev and Nanbu [5] derived a general formulation for the approximation of 
LFP equations. However, these (and all DSMC) methods become inefficient as the distribution approaches equilibrium, since 
most computation is spent on the collisions between particles sampled from the equilibrium part. A hybrid method is more 
favorable in this case, by evolving the equilibrium part according to a fluid equation and sampling particles from only the 
remaining part. Caflisch et al. [6] introduced thermalization/dethermalization (TD) methods by splitting the distribution into

f (v) = m(v) + f p(v), (1.1)

i.e. an equilibrium part m and a positive deviation part f p(v) ≥ 0. After performing collisions in each step, a thermaliza-
tion/dethermalization step is applied as a reorganization of the splitting (1.1). Later Ricketson et al. [17] improved this 
method by associating each numerical particle with an entropy which provides more accurate information on whether 
thermalization/dethermalization is needed. Another hybrid method is proposed in [20].
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The splitting (1.1) is less efficient if defects exist in the equilibrium m, since one needs to take the equilibrium below the 
whole distribution (i.e. m ≤ f ), leaving the large remaining part ( f − m) to be represented by particles. In this work we use 
“negative” particles, which represent the defects in equilibrium. More specifically, we write

f (v) = m(v) + f p(v) − fn(v),

with f p(v) ≥ 0 and fn(v) ≥ 0 the positive and negative parts of the deviation from equilibrium m(v). Positive and negative 
particles are sampled from f p and fn respectively. Hadjiconstantinou and co-workers [2,3,11] studied the collisions involving 
negative particles in rarefied gas and developed the low-variance deviational simulation Monte Carlo (LVDSMC) method. Our 
work, described below, is the first use of negatives particles in a DSMC method for Coulomb collisions.

The major problem in a negative particle method is that the total number of positive and negative particles increases 
due to collisions involving a negative particle. In the DSMC method for rarefied gas, only a number of O (�t) collisions are 
performed in one step, which makes N(t), the total number of particles, grow exponentially on a physical time scale. To 
address this growth, [2] constructed a mesh with small grid size in phase space, and in each grid cell the particles with 
opposite signs are removed in pairs. Later a gridless method was developed for linearized variable hard sphere (VHS) type 
collisions in [12]. Besides, weighted particles have also been studied [8,1] in rarefied gas collisions for variance reduction. 
We refer the reader to a recent review [16] for more results.

However, a direct application of the negative particle method on Coulomb collisions leads to a much more severe problem 
in the growth of the number of particles. In the TA method and Nanbu’s method for Coulomb collisions, every particle 
collides in every time step, which (more than) doubles N(t) in every step. As a result the particle number grows in the 
numerical scale; i.e., N(t) grows unbounded as time step �t → 0. We give more details in Section 2.2.

This work contains three main contributions.

• We propose a novel negative particle method for general bilinear collisions (including both RGD and Coulomb collisions), 
in which the particle number only grows in the physical time scale, i.e., independent of time step �t . Two key ideas 
are:
– We propose a new decomposition formulation for the collision operator. In each time step, the positive/negative 

particles undergo two processes: regular collisions with particles sampled from f ; and particles sampled from a 
source term of size O (�t). Hence only extra O (�t) particles are created.

– We propose to use a small number of independently evolved particles (called “F-particles” below) to represent the 
particles sampled from f in the first process.

This is similar to a prediction–correction type method. The small number of independently evolved particles give a 
coarse solution to f . Then a finer solution is obtained by evolving the positive and negative particles. The applicability 
of this method is not restricted to the Coulomb collisions, but for the general bilinear operators. To the best knowledge 
of the authors these ideas have not been used before.

• We propose a particle resampling method to reduce the number of particles when it grows over some threshold.
• We apply this new method to Coulomb collisions. This method require sampling of particles from the source term 

Q ( f p − fn, m), the change in the Maxwellian component m due to collisions with positive and negative particles. We 
perform a detailed analysis of this source term and design an efficient sampling method when Q is the LFP operator.

These techniques lead to a new negative particle method which is much more accurate and efficient than the existing 
methods for Coulomb collisions. In this work we focus on the spatially homogeneous case. The extension to spatially inho-
mogeneous simulation deserves further investigation.

The remainder of this paper is organized as follows. In Section 2 the negative particle method for rarefied gas collisions 
is reviewed and then generalized to Coulomb collisions. We show that this method is not stable for Coulomb collisions due 
to the severe growth of the number of particles. Next in Section 3 we describe a new negative particle method for general 
binary collisions. A new particle reduction technique is also introduced in Section 3.5. Then in Section 4 we apply this 
method to the LFP equation, with details on how to sample from the source term. The whole algorithm is summarized in 
Section 5, with some discussions on acceleration techniques. Finally we give some numerical results in Section 6 to illustrate 
the high accuracy and efficiency. Conclusions are included in Section 7. Various details of the analysis are provided in four 
appendices.

2. Negative particle methods

In a negative particle method, the distribution f is split into

f (v, t) = m(v, t) + fd(v, t) = m(v, t) + f p(v, t) − fn(v, t), (2.1)

where m is a Maxwellian distribution which does not necessary have the same moments as f . fd(v) is the deviational 
distribution which might be negative for some v. f p and fn are the positive and negative parts of fd .

Denote the densities of each part as

ρ =
ˆ

f (v, t)dv, ρm =
ˆ

m(v, t)dv, ρp =
ˆ

f p(v, t)dv, ρn =
ˆ

fn(v, t)dv,



Download English Version:

https://daneshyari.com/en/article/6931282

Download Persian Version:

https://daneshyari.com/article/6931282

Daneshyari.com

https://daneshyari.com/en/article/6931282
https://daneshyari.com/article/6931282
https://daneshyari.com

