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We propose numerical algorithms for the simulation of the dynamics of three-dimensional 
vesicles suspended in viscous Stokesian fluid. Our method is an extension of our 
previous work (S.K. Veerapaneni et al., 2011) [37] to flows with viscosity contrast. This 
generalization requires a change in the boundary integral formulation of the solution, 
in which a double-layer Stokes integral is introduced, and leads to changes in the fluid 
dynamics due to the viscosity contrast of the vesicles, which can no longer be efficiently 
resolved with existing algorithms.
In this paper we describe the algorithms needed to handle flows with viscosity contrast 
accurately and efficiently. We show that a globally semi-implicit method does not have 
any time-step stability constraint for flows with single and multiple vesicles with moderate 
viscosity contrast and the computational cost per simulation unit time is comparable 
to or less than that of an explicit scheme. Automatic oversampling adaptation enables 
us to achieve high accuracy with very low spectral resolution. We conduct numerical 
experiments to investigate the stability, accuracy, and the computational cost of the 
algorithms. Overall, our method achieves several orders of magnitude speed-up compared 
to the standard explicit schemes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Vesicles are closed phospholipid membranes suspended in a viscous solution. They are found in biological systems, and 
play an important role in intracellular and intercellular transport. Artificial vesicles are used in a variety of drug-delivery 
systems and in the study of biomembrane mechanics. Vesicle-inspired mechanical models can be used to approximate 
red blood cell mechanics. For example, at equilibrium, vesicles and healthy red blood cells have a biconcave shape that 
corresponds to a minimal membrane bending energy. Under nonequilibrium conditions, as experienced in a simple shear 
flow, the best-studied features of red blood cell dynamics, such as tank-treading and tumbling motions, are shared with 
vesicles [5,17,20].

The vesicle evolution dynamics is characterized by an interplay between membrane’s elastic energy, surface inextensi-
bility, vanishing in-plane shear resistance, and non-local hydrodynamic interactions. Simulation of vesicles is a challenging 
nonlinear free boundary value problem, not amenable to analytical solutions in all but a few simple cases; numerical simu-
lations and experiments are the only options for the quantitative characterization of vesicle flows.
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In this paper, we present algorithms for the simulation of three-dimensional vesicle flows with contrast between the 
viscosity of the suspending fluid and that of the fluid enclosed inside each vesicle. This work is an extension of our previous 
work presented in [37].

1.1. Overview and contributions

Our method is based on Galerkin formulation corresponding to Lagrangian tracking of spectral collocation points placed 
on the membrane of the vesicle. We represent the vesicles in the spherical harmonic basis. For weakly-singular integrals, 
we use the high-order scheme proposed by Graham and Sloan [14] that enables accurate simulations with a small number 
of degrees of freedom per vesicle, compared to low-order schemes. For the position update in time, we present variants 
of semi-implicit marching scheme first derived for advection–diffusion equations [2] and then applied to integral-equation 
based fluid–structure interaction problems in [35].

The time-marching scheme requires the solution to a linear system of equations at each time step, which we perform 
using a Krylov iterative method, GMRES [33]. The problem of poor conditioning is addressed by a preconditioner based on 
the analytically-obtained spectrum of the operators on a unit sphere [37].

The main contributions of this article are:

• Efficient and accurate treatment of vesicles with viscosity contrast. The flow of vesicles with viscosity contrast requires in-
troduction of a double-layer Stokes integral with the velocity as the density (Eq. (3a)). The resulting system behaves 
differently from the equal-viscosity case. As the viscosity contrast of vesicles increases, they behave more like rigid 
bodies, which causes the vesicles to get very close to each other under certain flow conditions. Due to this proximity, 
explicit or block implicit methods become inaccurate and unstable (Table 4). We propose and analyze a global implicit 
scheme, in which the interaction of vesicles is treated implicitly (Section 3.4). We show that the stable time step for this 
scheme is orders of magnitude larger than the explicit scheme and its computational cost (per unit time) is superior to 
that of the explicit or block implicit schemes (Table 5).

• Galerkin formulation. We use a Galerkin formulation for the boundary integral solution. In [37], we used pseudo-spectral 
method, which has the same accuracy as the Galerkin method, but requires twice as many variables (the grid points) 
compared to spherical harmonic coefficients used in the Galerkin method and, unlike our Galerkin method, leads to 
overdetermined systems.

• Characterization and reduction of aliasing in differentiation. As our simulations involve differentiation and sampling of 
various functions (such as the force distribution on the surface) that may not be band-limited, aliasing may occur. 
Specifically, under-sampled high-frequency components may contribute to the low-frequency content of various fields 
we compute. In order to facilitate simulations with a low spherical harmonics’ truncation order, we introduce an algo-
rithm (Algorithm 1) which automatically adjusts the upsampling rate of functions for differentiation. In addition to this, 
we use reparametrization of the surface (Algorithm 3) from [37].

1.2. Limitations

We restrict our attention to suspensions of vesicles in unbounded domains. We have ignored inertial terms, so the 
overall method is restricted to low Reynolds numbers. Only vesicles with spherical topology are considered and topological 
changes are not allowed. By restricting our attention to spherical topologies, we can use spherical harmonics as basis and 
compute singular quadratures with spectrally accuracy. For general topologies one could, for example, use the boundary 
representation and singular integral quadrature introduced in [41]. For singular integrals, [41] relies on the partition of 
unity functions, whose derivative magnitudes rapidly increase with order, and as a consequence high-order methods require 
a relatively large number of points. Other approaches such as phase-field method [9,10] are more suited for handling 
changes in topology.

Another important limitation of our scheme is the lack of adaptivity (both in space and time). This lack of adaptivity 
manifests itself in the evaluation of nearly-singular integrals and can cause vesicle–vesicle collisions when the viscosity 
contrast is high. Indeed, one can easily construct simulations with high viscosity contrast where our algorithms fail to 
resolve inter-vesicle interactions accurately.

In this article, we use a first-order time-stepping scheme. High-order backward difference (BDF) schemes for 2D vesi-
cle simulation were presented in [32,36]. Their extension to our work entails the undesirable backward propagation of the 
reparametrization to previous time steps. A more attractive option is the spectral deferred correction (SDC) method, pre-
sented in [29,30] for 2D vesicles, where high-order solutions are iteratively constructed using a first-order scheme and only 
requires the previous time step (as opposed to BDF). SDC is well suited for high-order, adaptive time stepping and leverages 
the Globally-Implicit first-order scheme presented here.

1.3. Related work

This work is an extension of [37] and we refer the reader to [37] for a review of the related work on three-dimensional 
simulation of vesicles. The work of Graham and Sloan [14] on singular quadratures for the scalar Helmholtz operator, the 
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