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Textural equilibrium controls the distribution of the liquid phase in many naturally 
occurring porous materials such as partially molten rocks and alloys, salt–brine and ice–
water systems. In these materials, pore geometry evolves to minimize the solid–liquid 
interfacial energy while maintaining a constant dihedral angle, θ , at solid–liquid contact 
lines. We present a level set method to compute an implicit representation of the liquid–
solid interface in textural equilibrium with space-filling tessellations of multiple solid 
grains in three dimensions. Each grain is represented by a separate level set function and 
interfacial energy minimization is achieved by evolving the solid–liquid interface under 
surface diffusion to constant mean curvature surface. The liquid volume and dihedral angle 
constraints are added to the formulation using virtual convective and normal velocity 
terms. This results in an initial value problem for a system of non-linear coupled PDEs 
governing the evolution of the level sets for each grain, using the implicit representation 
of the solid grains as initial condition. A domain decomposition scheme is devised to 
restrict the computational domain of each grain to few grid points around the grain. The 
coupling between the interfaces is achieved in a higher level on the original computational 
domain. The spatial resolution of the discretization is improved through high-order spatial 
differentiation schemes and localization of computations through domain composition. 
Examples of three-dimensional solutions are also obtained for different grain distributions 
networks that illustrate the geometric flexibility of the method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Textural equilibrium determines the solid–liquid topology in many natural materials, such as partially molten rocks [1], 
ice–water systems [2], salt–brine systems [3] and alloys [4], see [5] for a recent review. Textural equilibrium is the state of 
thermodynamic equilibrium where the interfacial area has evolved to minimize the solid–liquid surface energy density, γsl
[6], and hence to constant mean curvature, κ , if the pressure is hydrostatic and the grains are isotropic. In these materials 
the topology and geometry of the pore network is controlled by the dihedral angle, θ , which is a function of the surface 
energies of the mineral grains and the pore fluid [5]. The basic theory of textural equilibrium in two-phase materials has
been introduced by Smith [4,7] in the context of partially molten alloys. Texturally equilibrated pores are common in porous 
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Fig. 1. (a) Wireframe of three truncated octahedron grains with a texturally equilibrated grain edge porosity of 1%. (b) Cross section of a grain-edge channel 
illustrating the definition of dihedral angle, θ . Images from Ghanbarzadeh et al. [5] used with permission from the American Physical Society.

materials with fast solid–liquid kinetics or in cases where long equilibration time scales are available, therefore they are 
common in geological systems. In most cases, solid–solid interfaces can be considered stationary on the timescale required 
to reach textural equilibrium of the pore network [1,5], so that the solid–solid surface energy density, γss , is not minimized. 
Fig. 1(a) illustrates how these pre-existing grain–grain boundaries impose a lattice on the pore space and introduces contact 
lines along which solid–liquid and solid–solid interfaces meet at sharp angles (Fig. 1(b)). In a two phase material with 
isotropic surface energies, mechanical equilibrium at the contact line requires that

γss = 2γsl cos (θ/2) (1)

where θ is the dihedral angle, γss and γsl are solid–solid and solid–liquid surface energy densities, respectively [6].
The physical principles of textural equilibrium are similar to standard wetting problems [8]. The most important dif-

ference between textural equilibrium and standard wetting problems is the role of the solid. In typical wetting problems 
the solid geometry is given and does not evolve. In the problems considered here the solid has a dual role. The solid–solid 
grain boundaries and edges do not evolve and provide a static lattice for fluid percolation. The solid–liquid grain boundaries, 
however, do evolve and determine the topology percolation of the pore space.

A characteristic of texturally equilibrated porous media is that the pore network percolates at any porosity for θ ≤ 60◦
while a percolation threshold exists for θ > 60◦ [9]. This property is specially important in comparison with the percolation 
theories in granular porous media where a porosity of 3% is required for connectivity of the pore space [10]. This ability 
of texturally equilibrated pore networks to percolate at very low porosities provides an elegant explanation for several 
geological observations [11,12,2]. For example, the small dihedral angle between basaltic melt and olivine explains the near 
instantaneous extraction of partial melts beneath mid-ocean ridges that was inferred from a number of indirect observations 
[9,1,13–15]. The decrease of the dihedral angle between rock salt and brine with increasing pressure and temperature [3,16]
can explain how rock salt that is generally impermeable at shallow depth [17] can become permeable and stained by oil at 
greater depth [12].

The first models which calculated the three-dimensional shape of pore networks in textural equilibrium were developed 
by [18] and [1]. The former was based on interfacial surface energy minimization and the latter was developed based on 
the idea that at equilibrium, chemical potential of components in different phases is constant. Both models eventually reach 
to same essential condition for texturally equilibrated pores

κ = const (2)

where κ is mean curvature of the solid–liquid interface for a two-phase system under hydrostatic pressure and with 
isotropic surface energies. Later, the model developed in [1] was reproduced to study the seismic wave velocities of 
partially molten rocks [19] and their electrical properties [20]. Recently, Wimert and Hier-Majumder [21] developed a 
three-dimensional micro-geodynamic model to solve for grain-melt geometry in an isotropic unit cell comprised of rhombic 
dodecahedral grains balancing pressure, surface tension, and viscous deformation forces.

A closed surface which minimizes the area subject to a fixed enclosed volume must have constant mean curvature, κ
[22]. Therefore, in textural equilibrium, solid–liquid interface is a minimal surface subject to dihedral angle condition at 
boundaries. Considering a solid–liquid interface given by z = f (x, y), mean curvature can be defined as

κ = (1 + f 2
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= const (3)
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