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This paper presents a simple, efficient, and high-order accurate sliding-mesh interface 
approach to the spectral difference (SD) method. We demonstrate the approach by solving 
the two-dimensional compressible Navier–Stokes equations on quadrilateral grids. This 
approach is an extension of the straight mortar method originally designed for stationary 
domains [7,8]. Our sliding method creates curved dynamic mortars on sliding-mesh 
interfaces to couple rotating and stationary domains. On the nonconforming sliding-mesh 
interfaces, the related variables are first projected from cell faces to mortars to compute 
common fluxes, and then the common fluxes are projected back from the mortars to the 
cell faces to ensure conservation. To verify the spatial order of accuracy of the sliding-
mesh spectral difference (SSD) method, both inviscid and viscous flow cases are tested. 
It is shown that the SSD method preserves the high-order accuracy of the SD method. 
Meanwhile, the SSD method is found to be very efficient in terms of computational 
cost. This novel sliding-mesh interface method is very suitable for parallel processing 
with domain decomposition. It can be applied to a wide range of problems, such as the 
hydrodynamics of marine propellers, the aerodynamics of rotorcraft, wind turbines, and 
oscillating wing power generators, etc.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

High-order (third and above) numerical methods are becoming more and more popular in recent years due to their 
capability of producing more accurate solutions on relatively coarse grid [31]. The spectral difference (SD) method is one 
discontinuous high-order method for solving the conservation laws on unstructured grids [15,32,28,11]. This method is an 
extension of the staggered multi-domain high-order method originally designed by Kopriva and Kolias [9]. It was shown that 
the SD method also has strong connection with the Flux Reconstruction/Correction Procedure via Reconstruction (FR/CPR) 
methods [5], and it shares similarity with the quadrature-free discontinuous Galerkin method [19]. The stability of a par-
ticular choice of flux points for the SD method was proved by Jameson [6] for the one-dimensional linear wave equation. 
Although the proof has not been generalized to higher-dimensional tensor-product elements, we have not observed numer-
ical instability from several successful turbulent flow simulations [14,1,22].
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We have seen more and more applications of the SD method to realistic flow simulations, for example, for large eddy 
simulations on fixed grids [14,1,22,25,24,16]. The SD method is also particularly promising for simulating vortex-dominated 
flows on moving and deforming grids [23,34]. Liang et al. [12] extended the SD method for simulating two-dimensional un-
steady flows around a plunging or pitching airfoil. DeJong and Liang [2] studied three-dimensional vortex induced vibrations 
using the SD method.

However, when the mesh undergoes very large rotation motion, such as for flows around rotating propellers or passing 
a flapping wing with very large pitching angles, remeshing [29,30] is required. Our goal is to involve the minimum number 
of remeshing and simultaneously preserve the high-order accuracy of the SD method. This motivates us to develop a new 
approach to the SD method for coupled rotating and stationary domains with sliding-mesh interfaces. In our approach, both 
inviscid and viscous fluxes on the sliding-mesh interfaces are constructed using a newly developed curved dynamic mortar 
method. The mortar method on fixed grids was originally proposed for incompressible flows by Mavriplis [18]. Kopriva 
[7,8] proved the conservation property of the mortar method for the compressible flow equations and applied it to the 
compressible Euler and Navier–Stokes equations on stationary domains using structured grids. In this paper, we show that 
our sliding-mesh approach is as simple as those designed for low-order numerical methods [33,20] while preserving the 
high-order accuracy of the SD method. This simple but novel sliding-mesh spectral difference (SSD) method can have a wide 
range of applications, such as marine propulsor hydrodynamics, rotorcraft aerodynamics, wind turbine wake dynamics, and 
oscillating wing power generators.

The paper is organized as follows: Section 2 gives the two-dimensional compressible Navier–Stokes equations on station-
ary and rotating domains. Section 3 reviews the SD method and presents the SSD method in detail. Verification studies and 
applications are reported in Section 4. Section 5 concludes the paper.

2. The governing equations

2.1. The compressible Navier–Stokes equations on stationary domain

We consider the two-dimensional unsteady compressible Navier–Stokes equations in conservative form,

∂Q

∂t
+ ∂F

∂x
+ ∂G

∂ y
= 0, (1)

where Q is the vector of conservative variables, F and G are the x and the y flux vectors. These terms have the following 
expressions,

Q = [ρ ρu ρv E]T , (2)

F = Finv(Q ) + Fvis(Q ,∇ Q ), (3)

G = Ginv(Q ) + Gvis(Q ,∇ Q ), (4)

where ρ is the fluid density, u and v are the x and the y velocities, E is the total energy per volume defined as E =
p/(γ − 1) + 1

2 ρ(u2 + v2), p is the pressure, γ is the ratio of specific heats and is set to 1.4 (i.e., the typical value for the air 
in standard conditions).

As shown in Eqs. (3) and (4), the fluxes have been divided into inviscid and viscous parts. The inviscid fluxes are only 
functions of conservative variables, which are

Finv =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
(E + p)u

⎤
⎥⎥⎦ , Ginv =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
(E + p)v

⎤
⎥⎥⎦ . (5)

The viscous fluxes are functions of the conservative variables as well as their gradients. They have the following expressions,

Fvis = −

⎡
⎢⎢⎣

0
τxx

τyx

uτxx + vτyx + kTx

⎤
⎥⎥⎦ , Gvis = −

⎡
⎢⎢⎣

0
τxy

τyy

uτxy + vτyy + kT y

⎤
⎥⎥⎦ , (6)

where τi j is the shear stress tensor and is related to the velocity gradients as τi j = μ(ui, j + u j,i) + λδi juk,k , μ is the 
dynamic viscosity, λ = −2/3μ based on Stokes’ hypothesis, δi j is the Kronecker delta, k is the thermal conductivity, T is the 
temperature which is related to density and pressure through the ideal gas law p = ρRT , where R is the gas constant.

2.2. The compressible Navier–Stokes equations on rotating domain

On the rotating domains, we implement a simplified equation which is equivalent to the Arbitrary Lagrange–Eulerian 
(ALE) [4] form of Eq. (1). Due to grid motion, the inviscid fluxes are modified to take the following forms,
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