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A general adaptive modeling algorithm for selection and validation of coarse-grained 
models of atomistic systems is presented. A Bayesian framework is developed to address 
uncertainties in parameters, data, and model selection. Algorithms for computing output 
sensitivities to parameter variances, model evidence and posterior model plausibilities for 
given data, and for computing what are referred to as Occam Categories in reference 
to a rough measure of model simplicity, make up components of the overall approach. 
Computational results are provided for representative applications.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The subject of model validation in the presence of uncertainties – in observational data, in model parameters, and 
uncertainties in the generally subjective process of selecting the model itself – lies at the very foundations of the scientific 
method. Scientific knowledge is acquired through observations of physical events and through the development of scientific 
hypotheses on the causes of the events. The former requires the acquisition of relevant observational data and the latter 
are the consequences of inductive logic leading to mathematical and computational models, the validity of which must be 
tested against experiments or observations.

Here we consider issues of model selection and validation in connection with coarse graining of atomic systems: the 
creation of models of atomistic systems by aggregating clusters of atoms into “beads” or “super atoms” so as to dramatically 
reduce the number of degrees of freedom and also to extend time scales in which physical quantities of interest can be ob-
served. The overriding issues in developing coarse-grained (CG) models are how accurately they approximate key quantities 
of interest captured by the all-atom (AA) system; that is, is the CG model valid in some sense, and, more fundamentally, 
how does one select the CG model itself to faithfully represent relevant properties of the AA model? It is important that 
inherent uncertainties encountered in each step of the model validation and selection process must also be taken into 
account. In this study, a Bayesian framework is developed to address these issues.

A large literature on CG models exists, going back over a half century as early versions of CG approximations appeared 
in the 1940s, with more general approaches appearing decades later in computer implementations (e.g. [22,25]). The recent 
survey of Noid [42] of CG models of bio-molecular system cites almost 600 works and the survey of Li et al. [36] with 
over 400 references attests to the great interest in CG methodologies. Among methods proposed for constructing CG models 
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using AA-model data, we mention force-matching methods [18,28–31], the so-called “multiscale coarse-graining” methods 
of Izvekov and Voth et al. [26,27,31,61,66] and Das and Andersen [16,17] which were shown to be “physically consistent” in 
[41,43,44], the iterative Boltzmann inversion methods of [54] in which CG parameters are chosen to fit specific probability 
distributions in AA systems, the Reverse Monte Carlo (RMC) method [38–40], the Conditional Reverse Work (CRW) method 
[9,10], and the methods of Shell et al. based on parameter selections that minimize the relative entropics of CG and AA 
systems (e.g. [12,13,19,60]).

The present work, which builds on the general framework for model validation and selection advanced in [21] and [48], 
follows somewhat different arguments than earlier approaches, as it attempts to make specific the processes of model 
selection and validation in the presence of uncertainties.

Our general approach toward selecting and validating CG models can be described as an adaptive modeling paradigm 
that employs Bayesian and information theoretics and consists of the following five components:

I Parametric Model Classes: A family of possible parametric model classes with unknown parameters θ defining a particular 
CG interatomic potential.

II Parameter Sensitivity Analysis: A parameter sensitivity analysis performed over the entire set of M models. Here we 
employ a variance-based sensitivity analysis that computes the sensitivity of a representative output function (here the 
total potential energy) due to variations in parameters using Monte Carlo samples of parameter probability densities, 
retaining only parameters that significantly influence the output.

III Occam Categories: We partition the surviving models into categories numbered according to the number of unknown 
parameters in each model. Here we equate the number of parameters to the simplicity of the model in the spirit of 
Occam’s Razor, knowing that this is not always a precise designation.

IV Model Plausibilities and Parameters Calibration: For models in a given set, we compute the Bayesian posterior plausibility 
of each model for given AA data in a calibration scenario. The use of model plausibilities in selecting CG models 
is discussed in [20,21,49]. The calibration scenario is viewed as an initial characterization of probability densities of 
parameters for models of representative molecules that are to be tested in one or more validation tests. Upon calculating 
plausibilities, the most plausible is selected.

V Validation Tests: One or more validation tests are designed to test the accuracy with which the most plausible model 
from IV predicts CG observables. A validation criterion must be specified to judge if the prediction is adequate and that, 
therefore, the model is not invalid (“valid”). If the model is valid, the process is terminated. The validated model is then 
used to solve the forward problem for the target quantities of interest (QoI) and the uncertainty in the QoI is quantified 
using standard measures.

Other proposals for Bayesian calibration methods for molecular systems can be found in the papers of Liu et al. [37], 
Español and Zúñiga [19], and Wang et al. [64], and more recently in the work of Angelikopoulos et al. [2,3]. Also relevant 
are the works of Das and Anderson [16,17] on their multiscale coarse-graining methods.

Following this introduction, we present an overview of modeling atomistic systems and creating a coarse-grained model. 
In Section 3, a Bayesian framework for building predictive models is detailed. Section 4 presents the Occam-Plausibility 
Algorithm, which pairs the concept of Occam’s Razor with the Bayesian framework laid down in Section 3. An example 
application of this algorithm to coarse-grained polyethylene is given in Section 5. Concluding remarks can be found in 
Section 6.

2. The problem setting

2.1. The AA model

We begin with the general process of creating CG models designed to deliver approximations of properties of a “ground-
truth” all-atom (AA) model, the properties of which are assumed to be known (the force field, parameters, etc.). The AA 
model thus provides synthetic observational data for calibrating and validating the CG model for specific observables and 
quantities of interest (QoI). For specificity, the behavior of the atomic system is assumed to be captured through molecu-
lar dynamics (MD) simulations, implemented using a hardened and generally accepted MD code. Also for simplicity, and 
without loss in generality, we restrict attentions to configurational energies of canonical ensembles of AA systems. In the 
present investigation, we employ LAMMPS [52]. A force field (the functional form of the potential energy) of the general 
form calibrated in [34,35] is employed,

u(r) = V bond(r) + V angle(r) + V dihedral(r) + V non-bonded(r) + V coulomb(r), (1)

where r = rn = {r1, r2, . . . , rn} is the vector of atomic coordinates in an n-atom system, and, as typical examples of energy 
characterizations,

V bond(r) =
Nb∑

i=1

1

2
kri(ri − r0i)

2, (2a)
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