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Enhancing resolution in spectral response and an ability to differentiate spectral mixing 
in delineating the endmembers from the spectral response are central to the spectral 
data analysis. First and higher order derivatives analysis of absorbance and reflectance 
spectral data is commonly used techniques in differentiating the spectral mixing. But 
high sensitivity of derivative to the noise in data is a major problem in the robust 
estimation of derivative of spectral data. An algorithm of robust estimation of first and 
second order derivative spectra from evenly spaced noisy normal spectral data is proposed. 
The algorithm is formalized in the framework of an inverse problem, where based on 
the fundamental theorem of calculus a matrix equation is formed using a Volterra type 
integral equation of first kind. A regularization technique, where the balancing principle 
is used in selecting a posteriori optimal regularization parameter is designed to solve the 
inverse problem for robust estimation of first order derivative spectra. The higher order 
derivative spectra are obtained while using the algorithm in sequel. The algorithm is tested 
successfully with synthetically generated spectral data contaminated with additive white 
Gaussian noise, and also with real absorbance and reflectance spectral data for fresh and 
sea water respectively.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Enhanced resolution without bringing noise artifact in spectroscopic technique is an essential step in spectroscopic analy-
sis of a complex substance. This is because spectral contributions by the components within a substance under investigation 
often overlap in the measured spectral band making it difficult to identify and separate their contributions individually. In 
fact, such issue has been well recognized over many years and was attempted to resolve as early as middle of twentieth 
century [1–4]. There is a record of various approaches over more than six decades to enhance resolution, chiefly either 
through Fourier based self deconvolution [5,6] or by incorporating derivative of the spectra; in that derivative method has 
taken a significant place in today’s spectroscopy technique.

Initial attempt in incorporating derivative on the measured spectra were restricted with the hardware by designing 
either appropriate optical set up, such as scanning spectrophotometer of various make or through appropriate electronic 
circuitry. A detailed discussion on hardware based method is available in [7]. However, derivative spectroscopy through 
hardware implementation has limitations, such as 1) restricted limit on the order of derivative in the measured spectra, 
2) increasing difficulty in noise control with the increase in order of derivative and 3) a shift in amplitude and wavelength 
of the derivatives due to variation in the scan speed for optical scan based technique.
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Computational approach, on the other hand, is highly flexible. The noise reduction in the measurement becomes greatly 
simplified. With today’s technology of high speed computing and flexibility, one can have, almost a real time, derivative 
spectra from the measurement of normal spectra. Despite such advantage a robust, reliable computationally efficient method 
of derivative estimation, especially of large and noisy dataset remains elusive. Even today the difference method of comput-
ing derivative is most popular and is widely used technique, as it is found to be a simplest means of computing derivative 
from evenly spaced tabulated data using Excel™ spreadsheet. But such simplicity in computing comes with a price of com-
promising fidelity by increasing the effect of noise in data. More densely (i.e. reduction in data interval) the spectral data 
is measured the effect of noise in data becomes more pronounced in computed derivative using a difference scheme. Unre-
liability even grows further with the increase in noise magnitude and the order of derivatives. With a common belief, the 
reduction in reliability in estimated derivative via difference method is somewhat counter intuitive, as from the first princi-
ple of differential calculus computational accuracy should increase with decreasing data interval as long as the denominator 
remains non-zero or does not attain the underflow limit of a computer.

The measured data, however, contain random noise in general, and such noise has dominant effect on the high frequency 
part of the measurements. Since, a difference scheme which is essentially based on polynomial interpolation acquires the 
attribute of low pass filtering. Larger the data spacing higher is the filtering effect. An optimal data spacing which is most 
sought after is, however, hard to achieve. It was demonstrated in [8] that for the noise level δ in data a minimal error of 
magnitude 2

√
δ can be attained for a second order central difference scheme, if the denominator δx (= lΔ, with l an integer) 

approximates closely to δ. It then turns out that one needs to discard some data samples from a closely sampled dataset to 
gain the desired accuracy within a predetermined noise level. Such strategy is, however, not encouraging as A) one is often 
left with a little option of pre-selecting the data spacing (or the sampling rate) and B) the choice of larger δx leads to a lose 
of information from a highly sampled dataset.

Other popular approach, mostly embraced by geophysics community, is Fourier method in computing derivative of evenly 
distributed data. The motivation in adopting the technique is chiefly due to computational efficiency while handling a large 
data through Fast Fourier transform (FFT) algorithm, although additional steps involved, such as trend removal, appropriate 
windowing and zero padding makes the method somewhat tedious. Despite all, the most worrying aspect is that the method 
is sensitive to additive white Gaussian noise (AWGN). Higher the order of derivative, more susceptible it becomes with the 
noise in data. Therefore, derivative computation without noise removal using an appropriate filter cannot be an option. The 
requirement of filtering to tackle the noise issue (especially with AWGN) makes Savitzky–Golay (SG) moving polynomial 
method [9,10] an alternative approach for derivative spectroscopy. The performance of SG method, however, depends on 
the size of the window and the degree of polynomial chosen. Larger window would cause a high level of smoothness; 
conversely significantly small window size may not be able to attain the desired level of noise reduction. Another popular 
approach is polynomial fitting method [11,12] where the measured dataset is fitted with an appropriate polynomial globally 
and then derivative is computed on the polynomial. The limitation of such method is to find an optimal order of polynomial. 
Often, selecting a higher order polynomial brings in computational instability due to Runge effect [12].

On the other hand, the recent trend is towards regularization technique which would provide the much desired stable 
solution in derivative estimation while remaining not too expensive computationally. There are various strategies in esti-
mating derivative using regularization technique. For example, in [13] a regularized spline technique was used in estimating 
derivative of discrete unevenly spaced dataset. Other approaches are: 1) use of integral equation, such as Fredholm inte-
gral equation of first kind [35], Volterra integral equation [14,15] together with Tikhonov regularization technique, 2) use 
of integral equation and total variation regularization in estimating derivative from noisy data set [16], 3) finite difference 
technique with optimally chosen step size [36], use of dynamical system method [37].

We propose a novel technique which is sufficiently robust and computationally efficient in estimating derivative of noisy 
spectral data. We formalize the derivative estimation problem as an inverse problem. Using the fundamental theorem of 
calculus a matrix operator equation is designed from a Volterra type integral equation of first kind. The inverse problem 
is solved in the framework of a constrained optimization via regularization where an optimal value of regularization pa-
rameter is determined using ‘balancing principle’. We demonstrate robustness and efficiency of the proposed algorithm using 
numerical experiments on synthetically generated data which are contaminated with AWGN. We then use it in analyzing 
absorption and reflectance spectra within the visible range to study phytoplankton and other dissolved organic matters in 
pure water [32] and sea water [33] respectively.

The paper is organized as followed: In Section 2 we give a brief discussion on the theoretical background for our 
proposed algorithm. In Section 3 we discuss about the results obtained from the numerical experiments conducted on 
synthetically generated spectral data contaminated with AWGN. We also demonstrate with illustrations how conventional 
Fourier transform based method and central difference scheme in derivative computation fail when data contain AWGN even 
in a mild level. We then applied our method in estimating first and second order derivatives of absorbance and reflectance 
spectral data within the visible range to study the phytoplankton and other dissolve organic matters in both fresh water 
lake and sea water to demonstrate the applicability of the algorithm. The paper then concludes with a brief conclusion.

2. Formulation

Suppose that f (x) is a continuously differentiable, smooth function within an interval [a, b] for which u(x), a continuous 
function, is the first derivative. Actually, we deal with evenly sampled discrete 1D data, such as { f1, f2, . . . , f N} defined over 
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